19 #ifndef MAGICKCORE_ACCELERATE_KERNELS_PRIVATE_H
20 #define MAGICKCORE_ACCELERATE_KERNELS_PRIVATE_H
22 #if defined(__cplusplus) || defined(c_plusplus)
26 #if defined(MAGICKCORE_OPENCL_SUPPORT)
31 #define OPENCL_DEFINE(VAR,...) "\n #""define " #VAR " " #__VA_ARGS__ " \n"
32 #define OPENCL_ELIF(...) "\n #""elif " #__VA_ARGS__ " \n"
33 #define OPENCL_ELSE() "\n #""else " " \n"
34 #define OPENCL_ENDIF() "\n #""endif " " \n"
35 #define OPENCL_IF(...) "\n #""if " #__VA_ARGS__ " \n"
36 #define STRINGIFY(...) #__VA_ARGS__ "\n"
38 const char* accelerateKernels =
52 OPENCL_DEFINE(
MagickMax(x, y), (((x) > (y)) ? (x) : (y)))
53 OPENCL_DEFINE(
MagickMin(x, y), (((x) < (y)) ? (x) : (y)))
275 static inline CLQuantum ScaleCharToQuantum(
const unsigned char value)
277 return((CLQuantum) value);
284 static inline CLQuantum ScaleCharToQuantum(
const unsigned char value)
286 return((CLQuantum) (257.0f*value));
293 static inline CLQuantum ScaleCharToQuantum(
const unsigned char value)
295 return((CLQuantum) (16843009.0*value));
301 OPENCL_IF((MAGICKCORE_HDRI_SUPPORT == 1))
306 return (CLQuantum) value;
315 return (CLQuantum) (clamp(value, 0.0f,
QuantumRange) + 0.5f);
322 static inline
int ClampToCanvas(const
int offset, const
int range)
324 return clamp(offset, (
int)0, range - 1);
329 static inline int ClampToCanvasWithHalo(
const int offset,
const int range,
const int edge,
const int section)
331 return clamp(offset, section ? (
int)(0 - edge) : (
int)0, section ? (range - 1) : (range - 1 + edge));
336 static inline uint ScaleQuantumToMap(CLQuantum value)
338 if (value >= (CLQuantum)
MaxMap)
339 return ((uint)MaxMap);
341 return ((uint)value);
348 float sign = x < (float) 0.0 ? (
float)-1.0 : (float) 1.0;
356 return clamp(value, 0.0f, 1.0f);
362 static inline CLQuantum getBlue(CLPixelType p) {
return p.x; }
363 static inline void setBlue(CLPixelType* p, CLQuantum value) { (*p).x = value; }
364 static inline float getBlueF4(float4 p) {
return p.x; }
365 static inline void setBlueF4(float4* p,
float value) { (*p).x = value; }
367 static inline CLQuantum getGreen(CLPixelType p) {
return p.y; }
368 static inline void setGreen(CLPixelType* p, CLQuantum value) { (*p).y = value; }
369 static inline float getGreenF4(float4 p) {
return p.y; }
370 static inline void setGreenF4(float4* p,
float value) { (*p).y = value; }
372 static inline CLQuantum getRed(CLPixelType p) {
return p.z; }
373 static inline void setRed(CLPixelType* p, CLQuantum value) { (*p).z = value; }
374 static inline float getRedF4(float4 p) {
return p.z; }
375 static inline void setRedF4(float4* p,
float value) { (*p).z = value; }
377 static inline CLQuantum getOpacity(CLPixelType p) {
return p.w; }
378 static inline void setOpacity(CLPixelType* p, CLQuantum value) { (*p).w = value; }
379 static inline float getOpacityF4(float4 p) {
return p.w; }
380 static inline void setOpacityF4(float4* p,
float value) { (*p).w = value; }
382 static inline void setGray(CLPixelType* p, CLQuantum value) { (*p).z = value; (*p).y = value; (*p).x = value; }
384 static inline float GetPixelIntensity(
const int method,
const int colorspace, CLPixelType p)
386 float red = getRed(p);
387 float green = getGreen(p);
388 float blue = getBlue(p);
399 intensity = (red + green + blue) / 3.0;
415 intensity = (float)(((
float)red*red + green*green + blue*blue) /
429 intensity = 0.298839*red + 0.586811*green + 0.114350*blue;
442 intensity = 0.298839*red + 0.586811*green + 0.114350*blue;
456 intensity = 0.212656*red + 0.715158*green + 0.072186*blue;
469 intensity = 0.212656*red + 0.715158*green + 0.072186*blue;
474 intensity = (float)(sqrt((
float)red*red + green*green + blue*blue) /
507 ulong MWC_AddMod64(ulong a, ulong b, ulong M)
511 if( (v>=M) || (convert_float(v) < convert_float(a)) )
522 ulong MWC_MulMod64(ulong a, ulong b, ulong M)
527 r=MWC_AddMod64(r,b,M);
528 b=MWC_AddMod64(b,b,M);
539 ulong MWC_PowMod64(ulong a, ulong e, ulong M)
544 acc=MWC_MulMod64(acc,sqr,M);
545 sqr=MWC_MulMod64(sqr,sqr,M);
551 uint2 MWC_SkipImpl_Mod64(uint2 curr, ulong A, ulong M, ulong distance)
553 ulong m=MWC_PowMod64(A, distance, M);
554 ulong x=curr.x*(ulong)A+curr.y;
555 x=MWC_MulMod64(x, m, M);
556 return (uint2)((uint)(x/A), (uint)(x%A));
559 uint2 MWC_SeedImpl_Mod64(ulong A, ulong M, uint vecSize, uint vecOffset, ulong streamBase, ulong streamGap)
566 enum{ MWC_BASEID = 4077358422479273989UL };
568 ulong dist=streamBase + (get_global_id(0)*vecSize+vecOffset)*streamGap;
569 ulong m=MWC_PowMod64(A, dist, M);
571 ulong x=MWC_MulMod64(MWC_BASEID, m, M);
572 return (uint2)((uint)(x/A), (uint)(x%A));
576 typedef struct{ uint x; uint c; uint seed0; ulong seed1; } mwc64x_state_t;
578 void MWC64X_Step(mwc64x_state_t *s)
582 uint Xn=s->seed0*X+C;
583 uint carry=(uint)(Xn<C);
584 uint Cn=mad_hi(s->seed0,X,carry);
590 void MWC64X_Skip(mwc64x_state_t *s, ulong distance)
592 uint2 tmp=MWC_SkipImpl_Mod64((uint2)(s->x,s->c), s->seed0, s->seed1, distance);
597 void MWC64X_SeedStreams(mwc64x_state_t *s, ulong baseOffset, ulong perStreamOffset)
599 uint2 tmp=MWC_SeedImpl_Mod64(s->seed0, s->seed1, 1, 0, baseOffset, perStreamOffset);
605 uint MWC64X_NextUint(mwc64x_state_t *s)
607 uint res=s->x ^ s->c;
616 float mwcReadPseudoRandomValue(mwc64x_state_t* rng) {
617 return (1.0f * MWC64X_NextUint(rng)) / (float)(0xffffffff);
621 float mwcGenerateDifferentialNoise(mwc64x_state_t* r, CLQuantum pixel,
NoiseType noise_type,
float attenuate) {
630 alpha=mwcReadPseudoRandomValue(r);
646 beta=mwcReadPseudoRandomValue(r);
647 gamma=sqrt(-2.0f*log(alpha));
648 sigma=gamma*cospi((2.0f*beta));
649 tau=gamma*sinpi((2.0f*beta));
688 if (alpha > MagickEpsilon)
689 sigma=sqrt(-2.0f*log(alpha));
690 beta=mwcReadPseudoRandomValue(r);
692 cospi((
float) (2.0f*beta))/2.0f);
701 for (i=0; alpha > poisson; i++)
703 beta=mwcReadPseudoRandomValue(r);
720 void AddNoise(
const __global CLPixelType* inputImage, __global CLPixelType* filteredImage
721 ,
const unsigned int inputPixelCount,
const unsigned int pixelsPerWorkItem
723 ,
const NoiseType noise_type,
const float attenuate
724 ,
const unsigned int seed0,
const unsigned int seed1
725 ,
const unsigned int numRandomNumbersPerPixel) {
731 uint span = pixelsPerWorkItem * numRandomNumbersPerPixel;
732 uint offset = span * get_local_size(0) * get_group_id(0);
734 MWC64X_SeedStreams(&rng, offset, span);
736 uint pos = get_local_size(0) * get_group_id(0) * pixelsPerWorkItem + get_local_id(0);
738 uint count = pixelsPerWorkItem;
741 if (pos < inputPixelCount) {
742 CLPixelType p = inputImage[pos];
745 setRed(&p,
ClampToQuantum(mwcGenerateDifferentialNoise(&rng,getRed(p),noise_type,attenuate)));
749 setGreen(&p,
ClampToQuantum(mwcGenerateDifferentialNoise(&rng,getGreen(p),noise_type,attenuate)));
753 setBlue(&p,
ClampToQuantum(mwcGenerateDifferentialNoise(&rng,getBlue(p),noise_type,attenuate)));
757 setOpacity(&p,
ClampToQuantum(mwcGenerateDifferentialNoise(&rng,getOpacity(p),noise_type,attenuate)));
760 filteredImage[pos] = p;
763 pos += get_local_size(0);
789 __kernel
void BlurRow(__global CLPixelType *im, __global float4 *filtered_im,
790 const ChannelType channel, __constant
float *filter,
791 const unsigned int width,
792 const unsigned int imageColumns,
const unsigned int imageRows,
793 __local CLPixelType *temp)
795 const int x = get_global_id(0);
796 const int y = get_global_id(1);
798 const int columns = imageColumns;
800 const unsigned int radius = (width-1)/2;
801 const int wsize = get_local_size(0);
802 const unsigned int loadSize = wsize+width;
830 const int groupX=get_local_size(0)*get_group_id(0);
831 const int groupY=get_local_size(1)*get_group_id(1);
834 for (
int i=get_local_id(0); i < loadSize; i=i+get_local_size(0))
837 temp[i] = im[y * columns + ClampToCanvas(i+groupX-radius, columns)];
846 barrier(CLK_LOCAL_MEM_FENCE);
849 if (get_global_id(0) < columns)
852 float4 result = (float4) 0;
856 \n #ifndef UFACTOR \n
857 \n #define UFACTOR 8 \n
860 for ( ; i+UFACTOR < width; )
862 \n #pragma unroll UFACTOR\n
863 for (
int j=0; j < UFACTOR; j++, i++)
865 result+=filter[i]*convert_float4(temp[i+get_local_id(0)]);
869 for ( ; i < width; i++)
871 result+=filter[i]*convert_float4(temp[i+get_local_id(0)]);
880 filtered_im[y*columns+x] = result;
893 __kernel
void BlurColumn(
const __global float4 *blurRowData, __global CLPixelType *filtered_im,
894 const ChannelType channel, __constant
float *filter,
895 const unsigned int width,
896 const unsigned int imageColumns,
const unsigned int imageRows,
897 __local float4 *temp)
899 const int x = get_global_id(0);
900 const int y = get_global_id(1);
904 const int columns = imageColumns;
905 const int rows = imageRows;
907 unsigned int radius = (width-1)/2;
908 const int wsize = get_local_size(1);
909 const unsigned int loadSize = wsize+width;
912 const int groupX=get_local_size(0)*get_group_id(0);
913 const int groupY=get_local_size(1)*get_group_id(1);
918 for (
int i = get_local_id(1); i < loadSize; i=i+get_local_size(1))
920 temp[i] = blurRowData[ClampToCanvas(i+groupY-radius, rows) * columns + groupX];
924 barrier(CLK_LOCAL_MEM_FENCE);
927 if (get_global_id(1) < rows)
930 float4 result = (float4) 0;
934 \n #ifndef UFACTOR \n
935 \n #define UFACTOR 8 \n
938 for ( ; i+UFACTOR < width; )
940 \n #pragma unroll UFACTOR \n
941 for (
int j=0; j < UFACTOR; j++, i++)
943 result+=filter[i]*temp[i+get_local_id(1)];
947 for ( ; i < width; i++)
949 result+=filter[i]*temp[i+get_local_id(1)];
958 filtered_im[y*columns+x] = (CLPixelType) (result.x,result.y,result.z,result.w);
977 static inline float ColorDodge(
const float Sca,
978 const float Sa,
const float Dca,
const float Da)
983 if ((Sca*Da+Dca*Sa) >= Sa*Da)
984 return(Sa*Da+Sca*(1.0-Da)+Dca*(1.0-Sa));
985 return(Dca*Sa*Sa/(Sa-Sca)+Sca*(1.0-Da)+Dca*(1.0-Sa));
1019 const float4 *q,float4 *composite) {
1030 gamma=
QuantumRange/(fabs(gamma) < MagickEpsilon ? MagickEpsilon : gamma);
1032 getRedF4(*q)*Da,Da));
1034 getGreenF4(*q)*Da,Da));
1036 getBlueF4(*q)*Da,Da));
1042 const float alpha,
const float4 *q,
1043 const float beta,float4 *composite)
1057 setOpacityF4(composite,(
float)
QuantumRange*(1.0-gamma));
1059 setRedF4(composite,gamma*(Sa*getRedF4(*p)+Da*getRedF4(*q)));
1060 setGreenF4(composite,gamma*(Sa*getGreenF4(*p)+Da*getGreenF4(*q)));
1061 setBlueF4(composite,gamma*(Sa*getBlueF4(*p)+Da*getBlueF4(*q)));
1067 const float alpha,
const float4 *q,
1068 const float beta,float4 *composite)
1078 void Composite(__global CLPixelType *image,
1079 const unsigned int imageWidth,
1080 const unsigned int imageHeight,
1081 const unsigned int imageMatte,
1082 const __global CLPixelType *compositeImage,
1083 const unsigned int compositeWidth,
1084 const unsigned int compositeHeight,
1085 const unsigned int compositeMatte,
1086 const unsigned int compose,
1088 const float destination_dissolve,
1089 const float source_dissolve) {
1092 index.x = get_global_id(0);
1093 index.y = get_global_id(1);
1096 if (index.x >= imageWidth
1097 || index.y >= imageHeight) {
1100 const CLPixelType inputPixel = image[index.y*imageWidth+index.x];
1102 setRedF4(&destination,getRed(inputPixel));
1103 setGreenF4(&destination,getGreen(inputPixel));
1104 setBlueF4(&destination,getBlue(inputPixel));
1107 const CLPixelType compositePixel
1108 = compositeImage[index.y*imageWidth+index.x];
1110 setRedF4(&source,getRed(compositePixel));
1111 setGreenF4(&source,getGreen(compositePixel));
1112 setBlueF4(&source,getBlue(compositePixel));
1114 if (imageMatte != 0) {
1115 setOpacityF4(&destination,getOpacity(inputPixel));
1118 setOpacityF4(&destination,0.0f);
1121 if (compositeMatte != 0) {
1122 setOpacityF4(&source,getOpacity(compositePixel));
1125 setOpacityF4(&source,0.0f);
1128 float4 composite=destination;
1137 destination_dissolve,&composite);
1144 CLPixelType outputPixel;
1148 setOpacity(&outputPixel,
ClampToQuantum(getOpacityF4(composite)));
1149 image[index.y*imageWidth+index.x] = outputPixel;
1168 float3 HueSaturationBrightness;
1169 HueSaturationBrightness.x = 0.0f;
1170 HueSaturationBrightness.y = 0.0f;
1171 HueSaturationBrightness.z = 0.0f;
1173 float r=(float) getRed(pixel);
1174 float g=(float) getGreen(pixel);
1175 float b=(float) getBlue(pixel);
1181 float delta=tmax-tmin;
1182 HueSaturationBrightness.y=delta/tmax;
1185 if (delta != 0.0f) {
1186 HueSaturationBrightness.x = ((r == tmax)?0.0f:((g == tmax)?2.0f:4.0f));
1187 HueSaturationBrightness.x += ((r == tmax)?(g-b):((g == tmax)?(b-r):(r-g)))/delta;
1188 HueSaturationBrightness.x/=6.0f;
1189 HueSaturationBrightness.x += (HueSaturationBrightness.x < 0.0f)?0.0f:1.0f;
1192 return HueSaturationBrightness;
1195 static inline CLPixelType
ConvertHSBToRGB(float3 HueSaturationBrightness) {
1197 float hue = HueSaturationBrightness.x;
1198 float brightness = HueSaturationBrightness.z;
1199 float saturation = HueSaturationBrightness.y;
1203 if (saturation == 0.0f) {
1205 setGreen(&rgb,getRed(rgb));
1206 setBlue(&rgb,getRed(rgb));
1210 float h=6.0f*(hue-floor(hue));
1212 float p=brightness*(1.0f-saturation);
1213 float q=brightness*(1.0f-saturation*f);
1214 float t=brightness*(1.0f-(saturation*(1.0f-f)));
1221 setRed(&rgb, (ih == 1)?clamped_q:
1222 (ih == 2 || ih == 3)?clamped_p:
1223 (ih == 4)?clamped_t:
1226 setGreen(&rgb, (ih == 1 || ih == 2)?clampedBrightness:
1227 (ih == 3)?clamped_q:
1228 (ih == 4 || ih == 5)?clamped_p:
1231 setBlue(&rgb, (ih == 2)?clamped_t:
1232 (ih == 3 || ih == 4)?clampedBrightness:
1233 (ih == 5)?clamped_q:
1239 __kernel
void Contrast(__global CLPixelType *im,
const unsigned int sharpen)
1242 const int sign = sharpen!=0?1:-1;
1243 const int x = get_global_id(0);
1244 const int y = get_global_id(1);
1245 const int columns = get_global_size(0);
1246 const int c = x + y * columns;
1248 CLPixelType pixel = im[c];
1250 float brightness = HueSaturationBrightness.z;
1251 brightness+=0.5f*sign*(0.5f*(sinpi(brightness-0.5f)+1.0f)-brightness);
1252 brightness = clamp(brightness,0.0f,1.0f);
1253 HueSaturationBrightness.z = brightness;
1256 filteredPixel.w = pixel.w;
1257 im[c] = filteredPixel;
1276 __kernel
void Histogram(__global CLPixelType * restrict im,
1279 const int colorspace,
1280 __global uint4 * restrict histogram)
1282 const int x = get_global_id(0);
1283 const int y = get_global_id(1);
1284 const int columns = get_global_size(0);
1285 const int c = x + y * columns;
1290 atomic_inc((__global uint *)(&(histogram[pos]))+2);
1303 __kernel
void ContrastStretch(__global CLPixelType * restrict im,
1305 __global CLPixelType * restrict stretch_map,
1306 const float4 white,
const float4 black)
1308 const int x = get_global_id(0);
1309 const int y = get_global_id(1);
1310 const int columns = get_global_size(0);
1311 const int c = x + y * columns;
1314 CLPixelType oValue, eValue;
1315 CLQuantum red, green, blue, opacity;
1320 if ((channel & RedChannel) != 0)
1322 if (getRedF4(white) != getRedF4(black))
1324 ePos = ScaleQuantumToMap(getRed(oValue));
1325 eValue = stretch_map[ePos];
1326 red = getRed(eValue);
1330 if ((channel & GreenChannel) != 0)
1332 if (getGreenF4(white) != getGreenF4(black))
1334 ePos = ScaleQuantumToMap(getGreen(oValue));
1335 eValue = stretch_map[ePos];
1336 green = getGreen(eValue);
1340 if ((channel & BlueChannel) != 0)
1342 if (getBlueF4(white) != getBlueF4(black))
1344 ePos = ScaleQuantumToMap(getBlue(oValue));
1345 eValue = stretch_map[ePos];
1346 blue = getBlue(eValue);
1350 if ((channel & OpacityChannel) != 0)
1352 if (getOpacityF4(white) != getOpacityF4(black))
1354 ePos = ScaleQuantumToMap(getOpacity(oValue));
1355 eValue = stretch_map[ePos];
1356 opacity = getOpacity(eValue);
1361 im[c]=(CLPixelType)(blue, green, red, opacity);
1380 void ConvolveOptimized(
const __global CLPixelType *input, __global CLPixelType *output,
1381 const unsigned int imageWidth,
const unsigned int imageHeight,
1382 __constant
float *filter,
const unsigned int filterWidth,
const unsigned int filterHeight,
1383 const uint matte,
const ChannelType channel, __local CLPixelType *pixelLocalCache, __local
float* filterCache) {
1386 blockID.x = get_group_id(0);
1387 blockID.y = get_group_id(1);
1391 imageAreaOrg.x = blockID.x * get_local_size(0);
1392 imageAreaOrg.y = blockID.y * get_local_size(1);
1394 int2 midFilterDimen;
1395 midFilterDimen.x = (filterWidth-1)/2;
1396 midFilterDimen.y = (filterHeight-1)/2;
1398 int2 cachedAreaOrg = imageAreaOrg - midFilterDimen;
1401 int2 cachedAreaDimen;
1402 cachedAreaDimen.x = get_local_size(0) + filterWidth - 1;
1403 cachedAreaDimen.y = get_local_size(1) + filterHeight - 1;
1406 int localID = get_local_id(1)*get_local_size(0)+get_local_id(0);
1407 int cachedAreaNumPixels = cachedAreaDimen.x * cachedAreaDimen.y;
1408 int groupSize = get_local_size(0) * get_local_size(1);
1409 for (
int i = localID; i < cachedAreaNumPixels; i+=groupSize) {
1411 int2 cachedAreaIndex;
1412 cachedAreaIndex.x = i % cachedAreaDimen.x;
1413 cachedAreaIndex.y = i / cachedAreaDimen.x;
1415 int2 imagePixelIndex;
1416 imagePixelIndex = cachedAreaOrg + cachedAreaIndex;
1420 imagePixelIndex.x = ClampToCanvas(imagePixelIndex.x, imageWidth);
1421 imagePixelIndex.y = ClampToCanvas(imagePixelIndex.y, imageHeight);
1423 pixelLocalCache[i] = input[imagePixelIndex.y * imageWidth + imagePixelIndex.x];
1427 for (
int i = localID; i < filterHeight*filterWidth; i+=groupSize) {
1428 filterCache[i] = filter[i];
1430 barrier(CLK_LOCAL_MEM_FENCE);
1434 imageIndex.x = imageAreaOrg.x + get_local_id(0);
1435 imageIndex.y = imageAreaOrg.y + get_local_id(1);
1438 if (imageIndex.x >= imageWidth
1439 || imageIndex.y >= imageHeight) {
1443 int filterIndex = 0;
1444 float4 sum = (float4)0.0f;
1446 if (((channel & OpacityChannel) == 0) || (matte == 0)) {
1447 int cacheIndexY = get_local_id(1);
1448 for (
int j = 0; j < filterHeight; j++) {
1449 int cacheIndexX = get_local_id(0);
1450 for (
int i = 0; i < filterWidth; i++) {
1451 CLPixelType p = pixelLocalCache[cacheIndexY*cachedAreaDimen.x + cacheIndexX];
1452 float f = filterCache[filterIndex];
1467 int cacheIndexY = get_local_id(1);
1468 for (
int j = 0; j < filterHeight; j++) {
1469 int cacheIndexX = get_local_id(0);
1470 for (
int i = 0; i < filterWidth; i++) {
1472 CLPixelType p = pixelLocalCache[cacheIndexY*cachedAreaDimen.x + cacheIndexX];
1474 float f = filterCache[filterIndex];
1475 float g = alpha * f;
1489 sum.xyz = gamma*sum.xyz;
1491 CLPixelType outputPixel;
1497 output[imageIndex.y * imageWidth + imageIndex.x] = outputPixel;
1503 void Convolve(
const __global CLPixelType *input, __global CLPixelType *output,
1504 const uint imageWidth,
const uint imageHeight,
1505 __constant
float *filter,
const unsigned int filterWidth,
const unsigned int filterHeight,
1509 imageIndex.x = get_global_id(0);
1510 imageIndex.y = get_global_id(1);
1516 if (imageIndex.x >= imageWidth
1517 || imageIndex.y >= imageHeight)
1520 int2 midFilterDimen;
1521 midFilterDimen.x = (filterWidth-1)/2;
1522 midFilterDimen.y = (filterHeight-1)/2;
1524 int filterIndex = 0;
1525 float4 sum = (float4)0.0f;
1527 if (((channel & OpacityChannel) == 0) || (matte == 0)) {
1528 for (
int j = 0; j < filterHeight; j++) {
1529 int2 inputPixelIndex;
1530 inputPixelIndex.y = imageIndex.y - midFilterDimen.y + j;
1531 inputPixelIndex.y = ClampToCanvas(inputPixelIndex.y, imageHeight);
1532 for (
int i = 0; i < filterWidth; i++) {
1533 inputPixelIndex.x = imageIndex.x - midFilterDimen.x + i;
1534 inputPixelIndex.x = ClampToCanvas(inputPixelIndex.x, imageWidth);
1536 CLPixelType p = input[inputPixelIndex.y * imageWidth + inputPixelIndex.x];
1537 float f = filter[filterIndex];
1552 for (
int j = 0; j < filterHeight; j++) {
1553 int2 inputPixelIndex;
1554 inputPixelIndex.y = imageIndex.y - midFilterDimen.y + j;
1555 inputPixelIndex.y = ClampToCanvas(inputPixelIndex.y, imageHeight);
1556 for (
int i = 0; i < filterWidth; i++) {
1557 inputPixelIndex.x = imageIndex.x - midFilterDimen.x + i;
1558 inputPixelIndex.x = ClampToCanvas(inputPixelIndex.x, imageWidth);
1560 CLPixelType p = input[inputPixelIndex.y * imageWidth + inputPixelIndex.x];
1562 float f = filter[filterIndex];
1563 float g = alpha * f;
1577 sum.xyz = gamma*sum.xyz;
1580 CLPixelType outputPixel;
1586 output[imageIndex.y * imageWidth + imageIndex.x] = outputPixel;
1604 __kernel
void HullPass1(
const __global CLPixelType *inputImage, __global CLPixelType *outputImage
1605 ,
const unsigned int imageWidth,
const unsigned int imageHeight
1606 ,
const int2 offset,
const int polarity,
const int matte) {
1608 int x = get_global_id(0);
1609 int y = get_global_id(1);
1611 CLPixelType v = inputImage[y*imageWidth+x];
1614 neighbor.y = y + offset.y;
1615 neighbor.x = x + offset.x;
1617 int2 clampedNeighbor;
1618 clampedNeighbor.x = ClampToCanvas(neighbor.x, imageWidth);
1619 clampedNeighbor.y = ClampToCanvas(neighbor.y, imageHeight);
1621 CLPixelType r = (clampedNeighbor.x == neighbor.x
1622 && clampedNeighbor.y == neighbor.y)?inputImage[clampedNeighbor.y*imageWidth+clampedNeighbor.x]
1638 \n #pragma unroll 4\n
1639 for (
unsigned int i = 0; i < 4; i++) {
1640 sv[i] = (sr[i] >= (sv[i]+ScaleCharToQuantum(2)))?(sv[i]+ScaleCharToQuantum(1)):sv[i];
1644 \n #pragma unroll 4\n
1645 for (
unsigned int i = 0; i < 4; i++) {
1646 sv[i] = (sr[i] <= (sv[i]-ScaleCharToQuantum(2)))?(sv[i]-ScaleCharToQuantum(1)):sv[i];
1651 v.x = (CLQuantum)sv[0];
1652 v.y = (CLQuantum)sv[1];
1653 v.z = (CLQuantum)sv[2];
1656 v.w = (CLQuantum)sv[3];
1658 outputImage[y*imageWidth+x] = v;
1669 __kernel
void HullPass2(
const __global CLPixelType *inputImage, __global CLPixelType *outputImage
1670 ,
const unsigned int imageWidth,
const unsigned int imageHeight
1671 ,
const int2 offset,
const int polarity,
const int matte) {
1673 int x = get_global_id(0);
1674 int y = get_global_id(1);
1676 CLPixelType v = inputImage[y*imageWidth+x];
1678 int2 neighbor, clampedNeighbor;
1680 neighbor.y = y + offset.y;
1681 neighbor.x = x + offset.x;
1682 clampedNeighbor.x = ClampToCanvas(neighbor.x, imageWidth);
1683 clampedNeighbor.y = ClampToCanvas(neighbor.y, imageHeight);
1685 CLPixelType r = (clampedNeighbor.x == neighbor.x
1686 && clampedNeighbor.y == neighbor.y)?inputImage[clampedNeighbor.y*imageWidth+clampedNeighbor.x]
1690 neighbor.y = y - offset.y;
1691 neighbor.x = x - offset.x;
1692 clampedNeighbor.x = ClampToCanvas(neighbor.x, imageWidth);
1693 clampedNeighbor.y = ClampToCanvas(neighbor.y, imageHeight);
1695 CLPixelType s = (clampedNeighbor.x == neighbor.x
1696 && clampedNeighbor.y == neighbor.y)?inputImage[clampedNeighbor.y*imageWidth+clampedNeighbor.x]
1719 \n #pragma unroll 4\n
1720 for (
unsigned int i = 0; i < 4; i++) {
1725 sv[i] =(( (int)( ss[i] < (sv[i]+ScaleCharToQuantum(2))) + (int) ( sr[i] <= sv[i] ) ) !=0) ? sv[i]:(sv[i]+ScaleCharToQuantum(1));
1729 \n #pragma unroll 4\n
1730 for (
unsigned int i = 0; i < 4; i++) {
1734 sv[i] = (( (int)(ss[i] > (sv[i]-ScaleCharToQuantum(2))) + (int)( sr[i] >= sv[i] )) !=0) ? sv[i]:(sv[i]-ScaleCharToQuantum(1));
1738 v.x = (CLQuantum)sv[0];
1739 v.y = (CLQuantum)sv[1];
1740 v.z = (CLQuantum)sv[2];
1743 v.w = (CLQuantum)sv[3];
1745 outputImage[y*imageWidth+x] = v;
1767 __kernel
void Equalize(__global CLPixelType * restrict im,
1769 __global CLPixelType * restrict equalize_map,
1770 const float4 white,
const float4 black)
1772 const int x = get_global_id(0);
1773 const int y = get_global_id(1);
1774 const int columns = get_global_size(0);
1775 const int c = x + y * columns;
1778 CLPixelType oValue, eValue;
1779 CLQuantum red, green, blue, opacity;
1784 if ((channel & SyncChannels) != 0)
1786 if (getRedF4(white) != getRedF4(black))
1788 ePos = ScaleQuantumToMap(getRed(oValue));
1789 eValue = equalize_map[ePos];
1790 red = getRed(eValue);
1791 ePos = ScaleQuantumToMap(getGreen(oValue));
1792 eValue = equalize_map[ePos];
1793 green = getRed(eValue);
1794 ePos = ScaleQuantumToMap(getBlue(oValue));
1795 eValue = equalize_map[ePos];
1796 blue = getRed(eValue);
1797 ePos = ScaleQuantumToMap(getOpacity(oValue));
1798 eValue = equalize_map[ePos];
1799 opacity = getRed(eValue);
1802 im[c]=(CLPixelType)(blue, green, red, opacity);
1831 const unsigned int number_parameters,
1832 __constant
float *parameters)
1834 float4 result = (float4) 0.0f;
1839 for (
unsigned int i=0; i < number_parameters; i++)
1840 result = result*(float4)
QuantumScale*convert_float4(pixel) + parameters[i];
1846 float freq,phase,ampl,bias;
1847 freq = ( number_parameters >= 1 ) ? parameters[0] : 1.0f;
1848 phase = ( number_parameters >= 2 ) ? parameters[1] : 0.0f;
1849 ampl = ( number_parameters >= 3 ) ? parameters[2] : 0.5f;
1850 bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5f;
1852 (freq*
QuantumScale*(
float)pixel.x + phase/360.0f)) + bias);
1854 (freq*
QuantumScale*(
float)pixel.y + phase/360.0f)) + bias);
1856 (freq*
QuantumScale*(
float)pixel.z + phase/360.0f)) + bias);
1858 (freq*
QuantumScale*(
float)pixel.w + phase/360.0f)) + bias);
1863 float width,range,center,bias;
1864 width = ( number_parameters >= 1 ) ? parameters[0] : 1.0f;
1865 center = ( number_parameters >= 2 ) ? parameters[1] : 0.5f;
1866 range = ( number_parameters >= 3 ) ? parameters[2] : 1.0f;
1867 bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5f;
1869 result.x = 2.0f/width*(
QuantumScale*(float)pixel.x - center);
1870 result.x = range/
MagickPI*asin(result.x)+bias;
1871 result.x = ( result.x <= -1.0f ) ? bias - range/2.0f : result.x;
1872 result.x = ( result.x >= 1.0f ) ? bias + range/2.0f : result.x;
1874 result.y = 2.0f/width*(
QuantumScale*(float)pixel.y - center);
1875 result.y = range/
MagickPI*asin(result.y)+bias;
1876 result.y = ( result.y <= -1.0f ) ? bias - range/2.0f : result.y;
1877 result.y = ( result.y >= 1.0f ) ? bias + range/2.0f : result.y;
1879 result.z = 2.0f/width*(
QuantumScale*(float)pixel.z - center);
1880 result.z = range/
MagickPI*asin(result.z)+bias;
1881 result.z = ( result.z <= -1.0f ) ? bias - range/2.0f : result.x;
1882 result.z = ( result.z >= 1.0f ) ? bias + range/2.0f : result.x;
1885 result.w = 2.0f/width*(
QuantumScale*(float)pixel.w - center);
1886 result.w = range/
MagickPI*asin(result.w)+bias;
1887 result.w = ( result.w <= -1.0f ) ? bias - range/2.0f : result.w;
1888 result.w = ( result.w >= 1.0f ) ? bias + range/2.0f : result.w;
1895 float slope,range,center,bias;
1896 slope = ( number_parameters >= 1 ) ? parameters[0] : 1.0f;
1897 center = ( number_parameters >= 2 ) ? parameters[1] : 0.5f;
1898 range = ( number_parameters >= 3 ) ? parameters[2] : 1.0f;
1899 bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5f;
1900 result = (float4)
MagickPI*(float4)slope*((float4)
QuantumScale*convert_float4(pixel)-(float4)center);
1920 __kernel
void ComputeFunction(__global CLPixelType *im,
1922 const unsigned int number_parameters, __constant
float *parameters)
1924 const int x = get_global_id(0);
1925 const int y = get_global_id(1);
1926 const int columns = get_global_size(0);
1927 const int c = x + y * columns;
1928 im[c] =
ApplyFunction(im[c],
function, number_parameters, parameters);
1945 __kernel
void Grayscale(__global CLPixelType *im,
1946 const int method,
const int colorspace)
1949 const int x = get_global_id(0);
1950 const int y = get_global_id(1);
1951 const int columns = get_global_size(0);
1952 const int c = x + y * columns;
1954 CLPixelType pixel = im[c];
1962 red=(float)getRed(pixel);
1963 green=(float)getGreen(pixel);
1964 blue=(float)getBlue(pixel);
1968 CLPixelType filteredPixel;
1974 intensity=(red+green+blue)/3.0;
1990 intensity=(float) (((
float) red*red+green*green+
2004 intensity=0.298839*red+0.586811*green+0.114350*blue;
2017 intensity=0.298839*red+0.586811*green+0.114350*blue;
2031 intensity=0.212656*red+0.715158*green+0.072186*blue;
2044 intensity=0.212656*red+0.715158*green+0.072186*blue;
2049 intensity=(float) (sqrt((
float) red*red+green*green+
2050 blue*blue)/sqrt(3.0));
2058 filteredPixel.w = pixel.w;
2060 im[c] = filteredPixel;
2077 static inline int mirrorBottom(
int value)
2079 return (value < 0) ? - (value) : value;
2081 static inline int mirrorTop(
int value,
int width)
2083 return (value >= width) ? (2 * width - value - 1) : value;
2086 __kernel
void LocalContrastBlurRow(__global CLPixelType *srcImage, __global CLPixelType *dstImage, __global
float *tmpImage,
2088 const int imageWidth,
2089 const int imageHeight)
2091 const float4 RGB = ((float4)(0.2126f, 0.7152f, 0.0722f, 0.0f));
2093 int x = get_local_id(0);
2094 int y = get_global_id(1);
2096 if ((x >= imageWidth) || (y >= imageHeight))
2099 global CLPixelType *src = srcImage + y * imageWidth;
2101 for (
int i = x; i < imageWidth; i += get_local_size(0)) {
2103 float weight = 1.0f;
2106 while ((j + 7) < i) {
2107 for (
int k = 0; k < 8; ++k)
2108 sum += (weight + k) * dot(RGB, convert_float4(src[mirrorBottom(j+k)]));
2113 sum += weight * dot(RGB, convert_float4(src[mirrorBottom(j)]));
2118 while ((j + 7) < radius + i) {
2119 for (
int k = 0; k < 8; ++k)
2120 sum += (weight - k) * dot(RGB, convert_float4(src[mirrorTop(j + k, imageWidth)]));
2124 while (j < radius + i) {
2125 sum += weight * dot(RGB, convert_float4(src[mirrorTop(j, imageWidth)]));
2130 tmpImage[i + y * imageWidth] = sum / ((radius + 1) * (radius + 1));
2136 __kernel
void LocalContrastBlurApplyColumn(__global CLPixelType *srcImage, __global CLPixelType *dstImage, __global
float *blurImage,
2138 const float strength,
2139 const int imageWidth,
2140 const int imageHeight)
2142 const float4 RGB = (float4)(0.2126f, 0.7152f, 0.0722f, 0.0f);
2144 int x = get_global_id(0);
2145 int y = get_global_id(1);
2147 if ((x >= imageWidth) || (y >= imageHeight))
2150 global
float *src = blurImage + x;
2153 float weight = 1.0f;
2156 while ((j + 7) < y) {
2157 for (
int k = 0; k < 8; ++k)
2158 sum += (weight + k) * src[mirrorBottom(j+k) * imageWidth];
2163 sum += weight * src[mirrorBottom(j) * imageWidth];
2168 while ((j + 7) < radius + y) {
2169 for (
int k = 0; k < 8; ++k)
2170 sum += (weight - k) * src[mirrorTop(j + k, imageHeight) * imageWidth];
2174 while (j < radius + y) {
2175 sum += weight * src[mirrorTop(j, imageHeight) * imageWidth];
2180 CLPixelType pixel = srcImage[x + y * imageWidth];
2181 float srcVal = dot(RGB, convert_float4(pixel));
2182 float mult = (srcVal - (sum / ((radius + 1) * (radius + 1)))) * (strength / 100.0f);
2183 mult = (srcVal + mult) / srcVal;
2189 dstImage[x + y * imageWidth] = pixel;
2207 static inline void ConvertRGBToHSL(
const CLQuantum red,
const CLQuantum green,
const CLQuantum blue,
2208 float *hue,
float *saturation,
float *lightness)
2223 *lightness=(tmax+tmin)/2.0;
2244 if (*lightness <= 0.5)
2245 *saturation=c/(2.0*(*lightness));
2247 *saturation=c/(2.0-2.0*(*lightness));
2250 static inline void ConvertHSLToRGB(
const float hue,
const float saturation,
const float lightness,
2251 CLQuantum *red,CLQuantum *green,CLQuantum *blue)
2266 if (lightness <= 0.5)
2267 c=2.0*lightness*saturation;
2269 c=(2.0-2.0*lightness)*saturation;
2270 tmin=lightness-0.5*c;
2271 h-=360.0*floor(h/360.0);
2273 x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
2274 switch ((
int) floor(h) % 6)
2330 static inline void ModulateHSL(
const float percent_hue,
const float percent_saturation,
const float percent_lightness,
2331 CLQuantum *red,CLQuantum *green,CLQuantum *blue)
2342 hue+=0.5*(0.01*percent_hue-1.0);
2347 saturation*=0.01*percent_saturation;
2348 lightness*=0.01*percent_lightness;
2352 __kernel
void Modulate(__global CLPixelType *im,
2353 const float percent_brightness,
2354 const float percent_hue,
2355 const float percent_saturation,
2356 const int colorspace)
2359 const int x = get_global_id(0);
2360 const int y = get_global_id(1);
2361 const int columns = get_global_size(0);
2362 const int c = x + y * columns;
2364 CLPixelType pixel = im[c];
2372 green=getGreen(pixel);
2373 blue=getBlue(pixel);
2380 ModulateHSL(percent_hue, percent_saturation, percent_brightness,
2381 &red, &green, &blue);
2386 CLPixelType filteredPixel;
2388 setRed(&filteredPixel, red);
2389 setGreen(&filteredPixel, green);
2390 setBlue(&filteredPixel, blue);
2391 filteredPixel.w = pixel.w;
2393 im[c] = filteredPixel;
2411 void MotionBlur(
const __global CLPixelType *input, __global CLPixelType *output,
2412 const unsigned int imageWidth,
const unsigned int imageHeight,
2413 const __global
float *filter,
const unsigned int width,
const __global int2* offset,
2415 const ChannelType channel,
const unsigned int matte) {
2418 currentPixel.x = get_global_id(0);
2419 currentPixel.y = get_global_id(1);
2421 if (currentPixel.x >= imageWidth
2422 || currentPixel.y >= imageHeight)
2426 pixel.x = (float)bias.x;
2427 pixel.y = (
float)bias.y;
2428 pixel.z = (float)bias.z;
2429 pixel.w = (
float)bias.w;
2431 if (((channel & OpacityChannel) == 0) || (matte == 0)) {
2433 for (
int i = 0; i < width; i++) {
2436 int2 samplePixel = currentPixel + offset[i];
2437 samplePixel.x = ClampToCanvas(samplePixel.x, imageWidth);
2438 samplePixel.y = ClampToCanvas(samplePixel.y, imageHeight);
2439 CLPixelType samplePixelValue = input[ samplePixel.y * imageWidth + samplePixel.x];
2441 pixel.x += (filter[i] * (float)samplePixelValue.x);
2442 pixel.y += (filter[i] * (float)samplePixelValue.y);
2443 pixel.z += (filter[i] * (float)samplePixelValue.z);
2444 pixel.w += (filter[i] * (float)samplePixelValue.w);
2447 CLPixelType outputPixel;
2452 output[currentPixel.y * imageWidth + currentPixel.x] = outputPixel;
2457 for (
int i = 0; i < width; i++) {
2460 int2 samplePixel = currentPixel + offset[i];
2461 samplePixel.x = ClampToCanvas(samplePixel.x, imageWidth);
2462 samplePixel.y = ClampToCanvas(samplePixel.y, imageHeight);
2464 CLPixelType samplePixelValue = input[ samplePixel.y * imageWidth + samplePixel.x];
2467 float k = filter[i];
2468 pixel.x = pixel.x + k * alpha * samplePixelValue.x;
2469 pixel.y = pixel.y + k * alpha * samplePixelValue.y;
2470 pixel.z = pixel.z + k * alpha * samplePixelValue.z;
2472 pixel.w += k * alpha * samplePixelValue.w;
2477 pixel.xyz = gamma*pixel.xyz;
2479 CLPixelType outputPixel;
2484 output[currentPixel.y * imageWidth + currentPixel.x] = outputPixel;
2502 __kernel
void RadialBlur(
const __global CLPixelType *im, __global CLPixelType *filtered_im,
2504 const unsigned int channel,
const unsigned int matte,
2505 const float2 blurCenter,
2506 __constant
float *cos_theta, __constant
float *sin_theta,
2507 const unsigned int cossin_theta_size)
2509 const int x = get_global_id(0);
2510 const int y = get_global_id(1);
2511 const int columns = get_global_size(0);
2512 const int rows = get_global_size(1);
2513 unsigned int step = 1;
2514 float center_x = (float) x - blurCenter.x;
2515 float center_y = (
float) y - blurCenter.y;
2516 float radius = hypot(center_x, center_y);
2519 float blur_radius = hypot(blurCenter.x, blurCenter.y);
2521 if (radius > MagickEpsilon)
2523 step = (
unsigned int) (blur_radius / radius);
2526 if (step >= cossin_theta_size)
2527 step = cossin_theta_size-1;
2531 result.x = (float)bias.x;
2532 result.y = (
float)bias.y;
2533 result.z = (float)bias.z;
2534 result.w = (
float)bias.w;
2535 float normalize = 0.0f;
2537 if (((channel & OpacityChannel) == 0) || (matte == 0)) {
2538 for (
unsigned int i=0; i<cossin_theta_size; i+=step)
2540 result += convert_float4(im[
2541 ClampToCanvas(blurCenter.x+center_x*cos_theta[i]-center_y*sin_theta[i]+0.5f,columns)+
2542 ClampToCanvas(blurCenter.y+center_x*sin_theta[i]+center_y*cos_theta[i]+0.5f, rows)*columns]);
2546 result = result * normalize;
2550 for (
unsigned int i=0; i<cossin_theta_size; i+=step)
2552 float4 p = convert_float4(im[
2553 ClampToCanvas(blurCenter.x+center_x*cos_theta[i]-center_y*sin_theta[i]+0.5f,columns)+
2554 ClampToCanvas(blurCenter.y+center_x*sin_theta[i]+center_y*cos_theta[i]+0.5f, rows)*columns]);
2557 result.x += alpha * p.x;
2558 result.y += alpha * p.y;
2559 result.z += alpha * p.z;
2566 result.x = gamma*result.x;
2567 result.y = gamma*result.y;
2568 result.z = gamma*result.z;
2569 result.w = normalize*result.w;
2590 float BoxResizeFilter(
const float x)
2598 float CubicBC(
const float x,
const __global
float* resizeFilterCoefficients)
2630 return(resizeFilterCoefficients[0]+x*(x*
2631 (resizeFilterCoefficients[1]+x*resizeFilterCoefficients[2])));
2633 return(resizeFilterCoefficients[3]+x*(resizeFilterCoefficients[4]+x*
2634 (resizeFilterCoefficients[5]+x*resizeFilterCoefficients[6])));
2640 float Sinc(
const float x)
2644 const float alpha=(float) (
MagickPI*x);
2645 return sinpi(x)/alpha;
2659 return ((x<1.0f)?(1.0f-x):0.0f);
2671 const float cosine=cos((
MagickPI*x));
2672 return(0.5f+0.5f*cosine);
2683 const float cosine=cos((
MagickPI*x));
2684 return(0.54f+0.46f*cosine);
2698 const float cosine=cos((
MagickPI*x));
2699 return(0.34f+cosine*(0.5f+cosine*0.16f));
2707 static inline float applyResizeFilter(
const float x,
const ResizeWeightingFunctionType filterType,
const __global
float* filterCoefficients)
2717 return CubicBC(x,filterCoefficients);
2719 return BoxResizeFilter(x);
2737 static inline float getResizeFilterWeight(
const __global
float* resizeFilterCubicCoefficients,
const ResizeWeightingFunctionType resizeFilterType
2739 ,
const float resizeFilterScale,
const float resizeWindowSupport,
const float resizeFilterBlur,
const float x)
2742 float xBlur = fabs(x/resizeFilterBlur);
2743 if (resizeWindowSupport < MagickEpsilon
2750 scale = resizeFilterScale;
2751 scale = applyResizeFilter(xBlur*scale, resizeWindowType, resizeFilterCubicCoefficients);
2753 float weight = scale * applyResizeFilter(xBlur, resizeFilterType, resizeFilterCubicCoefficients);
2760 const char* accelerateKernels2 =
2764 static inline unsigned int getNumWorkItemsPerPixel(
const unsigned int pixelPerWorkgroup,
const unsigned int numWorkItems) {
2765 return (numWorkItems/pixelPerWorkgroup);
2770 static inline int pixelToCompute(
const unsigned itemID,
const unsigned int pixelPerWorkgroup,
const unsigned int numWorkItems) {
2771 const unsigned int numWorkItemsPerPixel = getNumWorkItemsPerPixel(pixelPerWorkgroup, numWorkItems);
2772 int pixelIndex = itemID/numWorkItemsPerPixel;
2773 pixelIndex = (pixelIndex<pixelPerWorkgroup)?pixelIndex:-1;
2780 __kernel __attribute__((reqd_work_group_size(256, 1, 1)))
2781 void ResizeHorizontalFilter(
const __global CLPixelType* inputImage,
const unsigned int inputColumns,
const unsigned int inputRows,
const unsigned int matte
2782 ,
const float xFactor, __global CLPixelType* filteredImage,
const unsigned int filteredColumns,
const unsigned int filteredRows
2783 ,
const int resizeFilterType,
const int resizeWindowType
2784 ,
const __global
float* resizeFilterCubicCoefficients
2785 ,
const float resizeFilterScale,
const float resizeFilterSupport,
const float resizeFilterWindowSupport,
const float resizeFilterBlur
2786 , __local CLPixelType* inputImageCache,
const int numCachedPixels,
const unsigned int pixelPerWorkgroup,
const unsigned int pixelChunkSize
2787 , __local float4* outputPixelCache, __local
float* densityCache, __local
float* gammaCache) {
2791 const unsigned int startX = get_group_id(0)*pixelPerWorkgroup;
2792 const unsigned int stopX =
MagickMin(startX + pixelPerWorkgroup,filteredColumns);
2793 const unsigned int actualNumPixelToCompute = stopX - startX;
2796 float scale =
MagickMax(1.0f/xFactor+MagickEpsilon ,1.0f);
2797 const float support =
MagickMax(scale*resizeFilterSupport,0.5f);
2800 const int cacheRangeStartX =
MagickMax((
int)((startX+0.5f)/xFactor+MagickEpsilon-support+0.5f),(
int)(0));
2801 const int cacheRangeEndX =
MagickMin((
int)(cacheRangeStartX + numCachedPixels), (
int)inputColumns);
2804 const unsigned int y = get_global_id(1);
2805 event_t e = async_work_group_copy(inputImageCache,inputImage+y*inputColumns+cacheRangeStartX,cacheRangeEndX-cacheRangeStartX,0);
2806 wait_group_events(1,&e);
2808 unsigned int totalNumChunks = (actualNumPixelToCompute+pixelChunkSize-1)/pixelChunkSize;
2809 for (
unsigned int chunk = 0; chunk < totalNumChunks; chunk++)
2812 const unsigned int chunkStartX = startX + chunk*pixelChunkSize;
2813 const unsigned int chunkStopX =
MagickMin(chunkStartX + pixelChunkSize, stopX);
2814 const unsigned int actualNumPixelInThisChunk = chunkStopX - chunkStartX;
2817 const unsigned int itemID = get_local_id(0);
2818 const unsigned int numItems = getNumWorkItemsPerPixel(actualNumPixelInThisChunk, get_local_size(0));
2820 const int pixelIndex = pixelToCompute(itemID, actualNumPixelInThisChunk, get_local_size(0));
2822 float4 filteredPixel = (float4)0.0f;
2823 float density = 0.0f;
2826 if (pixelIndex != -1) {
2829 const int x = chunkStartX + pixelIndex;
2833 const unsigned int start = (
unsigned int)
MagickMax(bisect-support+0.5f,0.0f);
2834 const unsigned int stop = (
unsigned int)
MagickMin(bisect+support+0.5f,(
float)inputColumns);
2835 const unsigned int n = stop - start;
2838 unsigned int numStepsPerWorkItem = n / numItems;
2839 numStepsPerWorkItem += ((numItems*numStepsPerWorkItem)==n?0:1);
2841 const unsigned int startStep = (itemID%numItems)*numStepsPerWorkItem;
2842 if (startStep < n) {
2843 const unsigned int stopStep =
MagickMin(startStep+numStepsPerWorkItem, n);
2845 unsigned int cacheIndex = start+startStep-cacheRangeStartX;
2848 for (
unsigned int i = startStep; i < stopStep; i++,cacheIndex++) {
2849 float4 cp = convert_float4(inputImageCache[cacheIndex]);
2853 , resizeFilterScale, resizeFilterWindowSupport, resizeFilterBlur,scale*(start+i-bisect+0.5));
2855 filteredPixel += ((float4)weight)*cp;
2862 for (
unsigned int i = startStep; i < stopStep; i++,cacheIndex++) {
2863 CLPixelType p = inputImageCache[cacheIndex];
2867 , resizeFilterScale, resizeFilterWindowSupport, resizeFilterBlur,scale*(start+i-bisect+0.5));
2870 float4 cp = convert_float4(p);
2872 filteredPixel.x += alpha * cp.x;
2873 filteredPixel.y += alpha * cp.y;
2874 filteredPixel.z += alpha * cp.z;
2875 filteredPixel.w += weight * cp.w;
2885 if (itemID < actualNumPixelInThisChunk) {
2886 outputPixelCache[itemID] = (float4)0.0f;
2887 densityCache[itemID] = 0.0f;
2889 gammaCache[itemID] = 0.0f;
2891 barrier(CLK_LOCAL_MEM_FENCE);
2894 for (
unsigned int i = 0; i < numItems; i++) {
2895 if (pixelIndex != -1) {
2896 if (itemID%numItems == i) {
2897 outputPixelCache[pixelIndex]+=filteredPixel;
2898 densityCache[pixelIndex]+=density;
2900 gammaCache[pixelIndex]+=gamma;
2904 barrier(CLK_LOCAL_MEM_FENCE);
2907 if (itemID < actualNumPixelInThisChunk) {
2909 float density = densityCache[itemID];
2910 float4 filteredPixel = outputPixelCache[itemID];
2911 if (density!= 0.0f && density != 1.0)
2914 filteredPixel *= (float4)density;
2916 filteredImage[y*filteredColumns+chunkStartX+itemID] = (CLPixelType) (
ClampToQuantum(filteredPixel.x)
2922 float density = densityCache[itemID];
2923 float gamma = gammaCache[itemID];
2924 float4 filteredPixel = outputPixelCache[itemID];
2926 if (density!= 0.0f && density != 1.0) {
2928 filteredPixel *= (float4)density;
2939 filteredImage[y*filteredColumns+chunkStartX+itemID] = fp;
2950 __kernel __attribute__((reqd_work_group_size(1, 256, 1)))
2951 void ResizeVerticalFilter(
const __global CLPixelType* inputImage,
const unsigned int inputColumns,
const unsigned int inputRows,
const unsigned int matte
2952 ,
const float yFactor, __global CLPixelType* filteredImage,
const unsigned int filteredColumns,
const unsigned int filteredRows
2953 ,
const int resizeFilterType,
const int resizeWindowType
2954 ,
const __global
float* resizeFilterCubicCoefficients
2955 ,
const float resizeFilterScale,
const float resizeFilterSupport,
const float resizeFilterWindowSupport,
const float resizeFilterBlur
2956 , __local CLPixelType* inputImageCache,
const int numCachedPixels,
const unsigned int pixelPerWorkgroup,
const unsigned int pixelChunkSize
2957 , __local float4* outputPixelCache, __local
float* densityCache, __local
float* gammaCache) {
2961 const unsigned int startY = get_group_id(1)*pixelPerWorkgroup;
2962 const unsigned int stopY =
MagickMin(startY + pixelPerWorkgroup,filteredRows);
2963 const unsigned int actualNumPixelToCompute = stopY - startY;
2966 float scale =
MagickMax(1.0f/yFactor+MagickEpsilon ,1.0f);
2967 const float support =
MagickMax(scale*resizeFilterSupport,0.5f);
2970 const int cacheRangeStartY =
MagickMax((
int)((startY+0.5f)/yFactor+MagickEpsilon-support+0.5f),(
int)(0));
2971 const int cacheRangeEndY =
MagickMin((
int)(cacheRangeStartY + numCachedPixels), (
int)inputRows);
2974 const unsigned int x = get_global_id(0);
2975 event_t e = async_work_group_strided_copy(inputImageCache, inputImage+cacheRangeStartY*inputColumns+x, cacheRangeEndY-cacheRangeStartY, inputColumns, 0);
2976 wait_group_events(1,&e);
2978 unsigned int totalNumChunks = (actualNumPixelToCompute+pixelChunkSize-1)/pixelChunkSize;
2979 for (
unsigned int chunk = 0; chunk < totalNumChunks; chunk++)
2982 const unsigned int chunkStartY = startY + chunk*pixelChunkSize;
2983 const unsigned int chunkStopY =
MagickMin(chunkStartY + pixelChunkSize, stopY);
2984 const unsigned int actualNumPixelInThisChunk = chunkStopY - chunkStartY;
2987 const unsigned int itemID = get_local_id(1);
2988 const unsigned int numItems = getNumWorkItemsPerPixel(actualNumPixelInThisChunk, get_local_size(1));
2990 const int pixelIndex = pixelToCompute(itemID, actualNumPixelInThisChunk, get_local_size(1));
2992 float4 filteredPixel = (float4)0.0f;
2993 float density = 0.0f;
2996 if (pixelIndex != -1) {
2999 const int y = chunkStartY + pixelIndex;
3003 const unsigned int start = (
unsigned int)
MagickMax(bisect-support+0.5f,0.0f);
3004 const unsigned int stop = (
unsigned int)
MagickMin(bisect+support+0.5f,(
float)inputRows);
3005 const unsigned int n = stop - start;
3008 unsigned int numStepsPerWorkItem = n / numItems;
3009 numStepsPerWorkItem += ((numItems*numStepsPerWorkItem)==n?0:1);
3011 const unsigned int startStep = (itemID%numItems)*numStepsPerWorkItem;
3012 if (startStep < n) {
3013 const unsigned int stopStep =
MagickMin(startStep+numStepsPerWorkItem, n);
3015 unsigned int cacheIndex = start+startStep-cacheRangeStartY;
3018 for (
unsigned int i = startStep; i < stopStep; i++,cacheIndex++) {
3019 float4 cp = convert_float4(inputImageCache[cacheIndex]);
3023 , resizeFilterScale, resizeFilterWindowSupport, resizeFilterBlur,scale*(start+i-bisect+0.5));
3025 filteredPixel += ((float4)weight)*cp;
3032 for (
unsigned int i = startStep; i < stopStep; i++,cacheIndex++) {
3033 CLPixelType p = inputImageCache[cacheIndex];
3037 , resizeFilterScale, resizeFilterWindowSupport, resizeFilterBlur,scale*(start+i-bisect+0.5));
3040 float4 cp = convert_float4(p);
3042 filteredPixel.x += alpha * cp.x;
3043 filteredPixel.y += alpha * cp.y;
3044 filteredPixel.z += alpha * cp.z;
3045 filteredPixel.w += weight * cp.w;
3055 if (itemID < actualNumPixelInThisChunk) {
3056 outputPixelCache[itemID] = (float4)0.0f;
3057 densityCache[itemID] = 0.0f;
3059 gammaCache[itemID] = 0.0f;
3061 barrier(CLK_LOCAL_MEM_FENCE);
3064 for (
unsigned int i = 0; i < numItems; i++) {
3065 if (pixelIndex != -1) {
3066 if (itemID%numItems == i) {
3067 outputPixelCache[pixelIndex]+=filteredPixel;
3068 densityCache[pixelIndex]+=density;
3070 gammaCache[pixelIndex]+=gamma;
3074 barrier(CLK_LOCAL_MEM_FENCE);
3077 if (itemID < actualNumPixelInThisChunk) {
3079 float density = densityCache[itemID];
3080 float4 filteredPixel = outputPixelCache[itemID];
3081 if (density!= 0.0f && density != 1.0)
3084 filteredPixel *= (float4)density;
3086 filteredImage[(chunkStartY+itemID)*filteredColumns+x] = (CLPixelType) (
ClampToQuantum(filteredPixel.x)
3092 float density = densityCache[itemID];
3093 float gamma = gammaCache[itemID];
3094 float4 filteredPixel = outputPixelCache[itemID];
3096 if (density!= 0.0f && density != 1.0) {
3098 filteredPixel *= (float4)density;
3109 filteredImage[(chunkStartY+itemID)*filteredColumns+x] = fp;
3131 __kernel
void UnsharpMaskBlurColumn(
const __global CLPixelType* inputImage,
3132 const __global float4 *blurRowData, __global CLPixelType *filtered_im,
3133 const unsigned int imageColumns,
const unsigned int imageRows,
3134 __local float4* cachedData, __local
float* cachedFilter,
3135 const ChannelType channel,
const __global
float *filter,
const unsigned int width,
3136 const float gain,
const float threshold)
3138 const unsigned int radius = (width-1)/2;
3141 const int groupX = get_group_id(0);
3142 const int groupStartY = get_group_id(1)*get_local_size(1) - radius;
3143 const int groupStopY = (get_group_id(1)+1)*get_local_size(1) + radius;
3145 if (groupStartY >= 0
3146 && groupStopY < imageRows) {
3147 event_t e = async_work_group_strided_copy(cachedData
3148 ,blurRowData+groupStartY*imageColumns+groupX
3149 ,groupStopY-groupStartY,imageColumns,0);
3150 wait_group_events(1,&e);
3153 for (
int i = get_local_id(1); i < (groupStopY - groupStartY); i+=get_local_size(1)) {
3154 cachedData[i] = blurRowData[ClampToCanvas(groupStartY+i,imageRows)*imageColumns+ groupX];
3156 barrier(CLK_LOCAL_MEM_FENCE);
3159 event_t e = async_work_group_copy(cachedFilter,filter,width,0);
3160 wait_group_events(1,&e);
3164 const int cy = get_global_id(1);
3166 if (cy < imageRows) {
3167 float4 blurredPixel = (float4) 0.0f;
3171 \n #ifndef UFACTOR \n
3172 \n #define UFACTOR 8 \n
3175 for ( ; i+UFACTOR < width; )
3177 \n #pragma unroll UFACTOR \n
3178 for (
int j=0; j < UFACTOR; j++, i++)
3180 blurredPixel+=cachedFilter[i]*cachedData[i+get_local_id(1)];
3184 for ( ; i < width; i++)
3186 blurredPixel+=cachedFilter[i]*cachedData[i+get_local_id(1)];
3192 float4 inputImagePixel = convert_float4(inputImage[cy*imageColumns+groupX]);
3193 float4 outputPixel = inputImagePixel - blurredPixel;
3197 int4 mask = isless(fabs(2.0f*outputPixel), (float4)quantumThreshold);
3198 outputPixel = select(inputImagePixel + outputPixel * gain, inputImagePixel, mask);
3211 __kernel
void UnsharpMask(__global CLPixelType *im, __global CLPixelType *filtered_im,
3212 __constant
float *filter,
3213 const unsigned int width,
3214 const unsigned int imageColumns,
const unsigned int imageRows,
3215 __local float4 *pixels,
3216 const float gain,
const float threshold,
const unsigned int justBlur)
3218 const int x = get_global_id(0);
3219 const int y = get_global_id(1);
3221 const unsigned int radius = (width - 1) / 2;
3223 int row = y - radius;
3224 int baseRow = get_group_id(1) * get_local_size(1) - radius;
3225 int endRow = (get_group_id(1) + 1) * get_local_size(1) + radius;
3227 while (row < endRow) {
3228 int srcy = (row < 0) ? -row : row;
3229 srcy = (srcy >= imageRows) ? (2 * imageRows - srcy - 1) : srcy;
3231 float4 value = 0.0f;
3233 int ix = x - radius;
3236 while (i + 7 < width) {
3237 for (
int j = 0; j < 8; ++j) {
3239 srcx = (srcx < 0) ? -srcx : srcx;
3240 srcx = (srcx >= imageColumns) ? (2 * imageColumns - srcx - 1) : srcx;
3241 value += filter[i + j] * convert_float4(im[srcx + srcy * imageColumns]);
3248 int srcx = (ix < 0) ? -ix : ix;
3249 srcx = (srcx >= imageColumns) ? (2 * imageColumns - srcx - 1) : srcx;
3250 value += filter[i] * convert_float4(im[srcx + srcy * imageColumns]);
3254 pixels[(row - baseRow) * get_local_size(0) + get_local_id(0)] = value;
3255 row += get_local_size(1);
3259 barrier(CLK_LOCAL_MEM_FENCE);
3262 const int px = get_local_id(0);
3263 const int py = get_local_id(1);
3264 const int prp = get_local_size(0);
3265 float4 value = (float4)(0.0f);
3268 while (i + 7 < width) {
3269 value += (float4)(filter[i]) * pixels[px + (py + i) * prp];
3270 value += (float4)(filter[i]) * pixels[px + (py + i + 1) * prp];
3271 value += (float4)(filter[i]) * pixels[px + (py + i + 2) * prp];
3272 value += (float4)(filter[i]) * pixels[px + (py + i + 3) * prp];
3273 value += (float4)(filter[i]) * pixels[px + (py + i + 4) * prp];
3274 value += (float4)(filter[i]) * pixels[px + (py + i + 5) * prp];
3275 value += (float4)(filter[i]) * pixels[px + (py + i + 6) * prp];
3276 value += (float4)(filter[i]) * pixels[px + (py + i + 7) * prp];
3280 value += (float4)(filter[i]) * pixels[px + (py + i) * prp];
3283 if ((x < imageColumns) && (y < imageRows)) {
3284 if (justBlur == 0) {
3285 float4 srcPixel = convert_float4(im[x + y * imageColumns]);
3286 float4 diff = srcPixel - value;
3290 int4 mask = isless(fabs(2.0f * diff), (float4)quantumThreshold);
3291 value = select(srcPixel + diff * gain, srcPixel, mask);
3299 __kernel __attribute__((reqd_work_group_size(64, 4, 1)))
void WaveletDenoise(__global CLPixelType *srcImage, __global CLPixelType *dstImage,
3300 const float threshold,
3302 const int imageWidth,
3303 const int imageHeight)
3305 const int pad = (1 << (passes - 1));
3306 const int tileSize = 64;
3307 const int tileRowPixels = 64;
3308 const float noise[] = { 0.8002, 0.2735, 0.1202, 0.0585, 0.0291, 0.0152, 0.0080, 0.0044 };
3310 CLPixelType stage[16];
3312 local
float buffer[64 * 64];
3314 int srcx = (get_group_id(0) + get_global_offset(0) / tileSize) * (tileSize - 2 * pad) - pad + get_local_id(0);
3315 int srcy = (get_group_id(1) + get_global_offset(1) / 4) * (tileSize - 2 * pad) - pad;
3317 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1)) {
3318 stage[i / 4] = srcImage[mirrorTop(mirrorBottom(srcx), imageWidth) + (mirrorTop(mirrorBottom(srcy + i) , imageHeight)) * imageWidth];
3322 for (
int channel = 0; channel < 3; ++channel) {
3326 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3327 buffer[get_local_id(0) + i * tileRowPixels] = convert_float(stage[i / 4].s0);
3330 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3331 buffer[get_local_id(0) + i * tileRowPixels] = convert_float(stage[i / 4].s1);
3334 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3335 buffer[get_local_id(0) + i * tileRowPixels] = convert_float(stage[i / 4].s2);
3346 for (
int pass = 0; pass < passes; ++pass) {
3347 const int radius = 1 << pass;
3348 const int x = get_local_id(0);
3349 const float thresh = threshold * noise[pass];
3352 accum[0] = accum[1] = accum[2] = accum[3] = accum[4] = accum[5] = accum[6] = accum[6] = accum[7] = accum[8] = accum[9] = accum[10] = accum[11] = accum[12] = accum[13] = accum[14] = accum[15] = 0.0f;
3357 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1)) {
3358 const int offset = i * tileRowPixels;
3360 tmp[i / 4] = buffer[x + offset];
3361 pixel = 0.5f * tmp[i / 4] + 0.25 * (buffer[mirrorBottom(x - radius) + offset] + buffer[mirrorTop(x + radius, tileSize) + offset]);
3362 barrier(CLK_LOCAL_MEM_FENCE);
3363 buffer[x + offset] = pixel;
3365 barrier(CLK_LOCAL_MEM_FENCE);
3367 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1)) {
3368 pixel = 0.5f * buffer[x + i * tileRowPixels] + 0.25 * (buffer[x + mirrorBottom(i - radius) * tileRowPixels] + buffer[x + mirrorTop(i + radius, tileRowPixels) * tileRowPixels]);
3369 float delta = tmp[i / 4] - pixel;
3371 if (delta < -thresh)
3373 else if (delta > thresh)
3377 accum[i / 4] += delta;
3380 barrier(CLK_LOCAL_MEM_FENCE);
3381 if (pass < passes - 1)
3382 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3383 buffer[x + i * tileRowPixels] = tmp[i / 4];
3385 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3386 accum[i / 4] += tmp[i / 4];
3387 barrier(CLK_LOCAL_MEM_FENCE);
3392 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3396 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3400 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1))
3405 barrier(CLK_LOCAL_MEM_FENCE);
3410 if ((get_local_id(0) >= pad) && (get_local_id(0) < tileSize - pad) && (srcx >= 0) && (srcx < imageWidth)) {
3412 for (
int i = get_local_id(1); i < tileSize; i += get_local_size(1)) {
3413 if ((i >= pad) && (i < tileSize - pad) && (srcy + i >= 0) && (srcy + i < imageHeight)) {
3414 dstImage[srcx + (srcy + i) * imageWidth] = stage[i / 4];
3422 #endif // MAGICKCORE_OPENCL_SUPPORT
3424 #if defined(__cplusplus) || defined(c_plusplus)
3428 #endif // MAGICKCORE_ACCELERATE_PRIVATE_H
Definition: composite.h:91
Definition: composite.h:94
Definition: composite.h:65
Definition: colorspace.h:44
Definition: resize-private.h:31
Definition: colorspace.h:36
Definition: resize-private.h:37
Definition: visual-effects.h:34
Definition: statistic.h:117
Definition: resize-private.h:33
Definition: magick-type.h:185
Definition: composite.h:75
Definition: colorspace.h:40
static void MagickPixelCompositeBlend(const MagickPixelPacket *p, const MagickRealType alpha, const MagickPixelPacket *q, const MagickRealType beta, MagickPixelPacket *composite)
Definition: composite-private.h:138
Definition: composite.h:31
Definition: composite.h:93
Definition: colorspace.h:45
Definition: colorspace.h:33
Definition: composite.h:80
Definition: composite.h:33
Definition: resize-private.h:40
Definition: composite.h:90
Definition: resize-private.h:29
static MagickRealType ColorDodge(const MagickRealType Sca, const MagickRealType Sa, const MagickRealType Dca, const MagickRealType Da)
Definition: composite.c:287
PixelIntensityMethod
Definition: pixel.h:67
Definition: magick-type.h:174
Definition: composite.h:95
Definition: colorspace.h:59
Definition: magick-type.h:180
Definition: composite.h:59
Definition: composite.h:89
Definition: magick-type.h:169
Definition: composite.h:27
Definition: colorspace.h:41
Definition: colorspace.h:37
static MagickRealType RoundToUnity(const MagickRealType value)
Definition: composite-private.h:33
Definition: composite.h:35
Definition: composite.h:87
#define MagickPI
Definition: image-private.h:40
Definition: colorspace.h:58
Definition: colorspace.h:50
static MagickRealType Hanning(const MagickRealType x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:282
Definition: colorspace.h:47
Definition: statistic.h:116
Definition: colorspace.h:31
#define MAGICKCORE_QUANTUM_DEPTH
Definition: magick-type.h:28
Definition: composite.h:53
Definition: colorspace.h:35
NoiseType
Definition: visual-effects.h:27
Definition: resize-private.h:38
#define MagickEpsilon
Definition: magick-type.h:115
MagickExport void ConvertRGBToHSL(const Quantum red, const Quantum green, const Quantum blue, double *hue, double *saturation, double *lightness)
Definition: gem.c:1127
Definition: magick-type.h:175
Definition: colorspace.h:48
static Quantum ClampToQuantum(const MagickRealType quantum)
Definition: quantum.h:88
Definition: statistic.h:118
Definition: magick-type.h:187
Definition: visual-effects.h:36
Definition: visual-effects.h:35
Definition: colorspace.h:52
Definition: composite.h:47
static MagickRealType Hamming(const MagickRealType x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:294
Definition: resize-private.h:41
Definition: composite.h:73
Definition: composite.h:29
Definition: composite.h:72
Definition: composite.h:42
Definition: colorspace.h:43
Definition: composite.h:97
static void ModulateHSL(const double percent_hue, const double percent_saturation, const double percent_lightness, Quantum *red, Quantum *green, Quantum *blue)
Definition: enhance.c:3583
Definition: colorspace.h:34
Definition: colorspace.h:57
Definition: resize-private.h:30
static double PerceptibleReciprocal(const double x)
Definition: pixel-accessor.h:124
Definition: composite.h:54
#define GetPixelAlpha(pixel)
Definition: pixel-accessor.h:36
Definition: composite.h:38
Definition: composite.h:68
Definition: composite.h:96
Definition: magick-type.h:171
Definition: composite.h:71
Definition: resize-private.h:32
Definition: composite.h:55
Definition: composite.h:56
Definition: composite.h:69
static Quantum ApplyFunction(Quantum pixel, const MagickFunction function, const size_t number_parameters, const double *parameters, ExceptionInfo *exception)
Definition: statistic.c:1000
Definition: colorspace.h:38
Definition: composite.h:86
Definition: resize-private.h:36
Definition: colorspace.h:30
#define SigmaMultiplicativeGaussian
Definition: visual-effects.h:30
Definition: composite.h:49
Definition: composite.h:44
MagickExport void ConvertRGBToHSB(const Quantum red, const Quantum green, const Quantum blue, double *hue, double *saturation, double *brightness)
Definition: gem.c:994
Definition: magick-type.h:173
static void Contrast(const int sign, Quantum *red, Quantum *green, Quantum *blue)
Definition: enhance.c:917
Definition: magick-type.h:188
Definition: composite.h:46
Definition: statistic.h:114
Definition: composite.h:28
Definition: magick-type.h:168
Definition: magick-type.h:177
Definition: colorspace.h:54
Definition: magick-type.h:176
Definition: resize-private.h:39
Definition: composite.h:78
Definition: resize-private.h:34
#define QuantumScale
Definition: magick-type.h:120
Definition: colorspace.h:55
Definition: composite.h:62
Definition: colorspace.h:39
#define MaxMap
Definition: magick-type.h:78
Definition: magick-type.h:184
#define MagickMax(x, y)
Definition: image-private.h:36
Definition: composite.h:98
Definition: composite.h:39
static void CompositeColorDodge(const MagickPixelPacket *p, const MagickPixelPacket *q, MagickPixelPacket *composite)
Definition: composite.c:324
MagickExport void ConvertHSBToRGB(const double hue, const double saturation, const double brightness, Quantum *red, Quantum *green, Quantum *blue)
Definition: gem.c:284
Definition: composite.h:45
ChannelType
Definition: magick-type.h:164
Definition: composite.h:70
Definition: colorspace.h:46
Definition: resize-private.h:28
Definition: composite.h:81
Definition: composite.h:41
Definition: composite.h:52
Definition: colorspace.h:49
MagickExport void ConvertHSLToRGB(const double hue, const double saturation, const double lightness, Quantum *red, Quantum *green, Quantum *blue)
Definition: gem.c:460
Definition: composite.h:77
Definition: colorspace.h:53
Definition: composite.h:61
Definition: magick-type.h:170
static void MagickPixelCompositePlus(const MagickPixelPacket *p, const MagickRealType alpha, const MagickPixelPacket *q, const MagickRealType beta, MagickPixelPacket *composite)
Definition: composite-private.h:111
Definition: composite.h:76
Definition: visual-effects.h:32
Definition: magick-type.h:166
Definition: colorspace.h:28
Definition: resize-private.h:42
Definition: composite.h:50
Definition: composite.h:36
Definition: composite.h:43
MagickExport MagickRealType GetPixelIntensity(const Image *image, const PixelPacket *magick_restrict pixel)
Definition: pixel.c:2292
Definition: visual-effects.h:31
static MagickRealType Sinc(const MagickRealType, const ResizeFilter *)
Definition: composite.h:37
Definition: composite.h:60
Definition: statistic.h:115
ResizeWeightingFunctionType
Definition: resize-private.h:25
static MagickRealType Blackman(const MagickRealType x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:148
Definition: colorspace.h:56
#define MagickMin(x, y)
Definition: image-private.h:37
ColorspaceType
Definition: colorspace.h:25
Definition: composite.h:32
Definition: colorspace.h:29
Definition: composite.h:88
Definition: colorspace.h:42
Definition: composite.h:48
Definition: composite.h:64
Definition: magick-type.h:172
Definition: colorspace.h:51
CompositeOperator
Definition: composite.h:25
Definition: composite.h:79
Definition: colorspace.h:62
Definition: magick-type.h:179
Definition: colorspace.h:32
Definition: composite.h:66
Definition: composite.h:30
Definition: colorspace.h:60
Definition: magick-type.h:167
Definition: composite.h:63
Definition: composite.h:58
Definition: composite.h:92
Definition: magick-type.h:186
Definition: composite.h:34
Definition: visual-effects.h:29
static MagickRealType CubicBC(const MagickRealType x, const ResizeFilter *resize_filter)
Definition: resize.c:205
Definition: resize-private.h:27
Definition: composite.h:74
Definition: colorspace.h:27
MagickFunction
Definition: statistic.h:112
Definition: composite.h:40
Definition: composite.h:67
Definition: resize-private.h:35
#define QuantumRange
Definition: magick-type.h:86
static MagickRealType Triangle(const MagickRealType x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:505
Definition: composite.h:51
Definition: magick-type.h:178
Definition: composite.h:57
Definition: visual-effects.h:33