CCLRC / RUTHERFORD APPLETON LABORATORY SUN/210.27
Particle Physics & Astronomy Research Council

Starlink Project

Starlink User Note 210.27

R.F. Warren-Smith & D.S. Berry
25th February 2013

AST
A Library for Handling
World Coordinate Systems
in Astronomy

V7.3

Programmer’s (Guide
(Fortran Version)

Geocentric apparent equatorial coordinates; epach J1997.5

Declination

Right ascension

Abstract

The AST library provides a comprehensive range of facilities for attaching world coordinate
systems to astronomical data, for retrieving and interpreting that information in a variety of
formats, including FITS-WCS, and for generating graphical output based on it.

This programmer’s manual should be of interest to anyone writing astronomical applications
which need to manipulate coordinate system data, especially celestial or spectral coordinate
systems. AST is portable and environment-independent.

ii

Copyright (C) 2014 Science & Technology Facilities Council

SUN/210.27

CONTENTS

Contents

1 Introduction

1.1 What Problems Does AST Tackle?
1.2 Other Design Objectives e
1.3 What Does “AST” Stand For?

Overview of AST Concepts

2.1 Relationships Between Coordinate Systems
2.2 Mappings Available
2.3 Compound Mappings o v i
2.4 Representing Coordinate Systems L.
2.5 Networks of Coordinate Systems
2.6 Input/Output Facilities
2.7 Producing Graphical Output o

How To...

3.1 ...Obtain and Install AST
3.2 ...Structure an AST Program
3.3 ...Build an AST Program
3.4 ...Read a WCS Calibration from a Dataset
3.5 ...Validate WCS Information
3.6 ...Display AST Data e
3.7 ...Convert Between Pixel and World Coordinates
3.8 ...Test if a WCS is a Celestial Coordinate System
3.9 ...Test if a WCS is a Spectral Coordinate System
3.10 ...Format Coordinates for Display,
3.11 ...Display Coordinates as they are Transformed
3.12 ...Read Coordinates Entered by a User
3.13 ...Create a New WCS Calibration
3.14 ...Modify a WCS Calibration
3.15 ... Write a Modified WCS Calibration to a Dataset
3.16 ...Display a Graphical Coordinate Grid
3.17 ...Switch to Plot a Different Celestial Coordinate Grid
3.18 ...Give a User Control Over the Appearance of a Plot

An AST Object Primer

4.1 AST Objects e e
4.2 Object Creation and Pointers
4.3 The Object Hierarchy
4.4 Displaying Objects
4.5 Getting Attribute Values
4.6 Setting Attribute Values
4.7 Testing, Clearing and Defaulting Attributes
4.8 Transforming Coordinates
4.9 Managing Object Pointers Lo o
4.10 AST Pointer Contexts—Begin and End
4.11 Exporting, Importing and Exempting AST Pointers
4.12 Copying Objects

iii

=N -

— O 3 O ot ot G

15
15
15
16
16
17
17
17
18
18
19
19
20
21
23
25
27
29
30

4.13 Error Detection

Inter-Relating Coordinate Systems (Mappings)
The Mapping Class

The Mapping Model
Input and Output Coordinate Numbers
Forward and Inverse Transformations
Inverting Mappings
Finding the Rate of Change of a Mapping Output
Reporting Coordinate Transformations
Handling Missing (Bad) Coordinate Values
Example—the UnitMap

5.10 Example—the PermMap

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

Compound Mappings (CmpMaps)
Combining Mappings in Series

Combining Mappings in Parallel
The Component Mappings
Creating More Complex Mappings
Example—Transforming Between Two Calibrated Images
Over-Complex Compound Mappings
Simplifying Compound Mappings

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Representing Coordinate Systems (Frames)
The Frame Model
Creating a Frame
Using a Frame as a Mapping
Frame Axis Attributes
Frame Attributes
Formatting Axis Values
Normalising Frame Coordinates
Reading Formatted Axis Values
Permuting Frame Axes
Selecting Frame Axes
Calculating Distances, Angles and Offsets
The Domain Attribute
Conventions for Domain Names
The Unit Attribute
7.14.1 The Syntax for Unit Strings
7.14.2 Side-effects of Changing the Unit attribute

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10
7.11
7.12
7.13
7.14

Celestial Coordinate Systems (SkyFrames)
The SkyFrame Model
Creating a SkyFrame
Specifying a Particular Celestial Coordinate System
Attributes which Qualify Celestial Coordinate Systems
Using Default SkyFrame Attributes
Formatting Celestial Coordinates
Reading Formatted Celestial Coordinates

8.1
8.2
8.3
8.4
8.5
8.6
8.7

CONTENTS

CONTENTS

8.8 Representing Offsets from a Specified Sky Position . .

9 Spectral Coordinate Systems (SpecFrames)
9.1 The SpecFrame Model
9.2 Creating a SpecFrame
9.3 Specifying a Particular Spectral Coordinate System . .
9.4 Attributes which Qualify Spectral Coordinate Systems
9.5 Using Default SpecFrame Attributes
9.6 Creating Spectral Cubes
9.7 Handling Dual-Sideband Spectra

10 Time Systems (TimeFrames)
10.1 The TimeFrame Model
10.2 Creating a TimeFrame
10.3 Specifying a Particular Time System
10.4 Attributes which Qualify Time Coordinate Systems . .

11 Compound Frames (CmpFrames)
11.1 Creating a CmpFrame
11.2 The Attributes of a CmpFrame

12 An Introduction to Coordinate System Conversions
12.1 Converting between Celestial Coordinate Systems . . .
12.2 Converting between Spectral Coordinate Systems . . .
12.3 Converting between Time Coordinate Systems
12.4 Handling SkyFrame Axis Permutations
12.5 Converting Between Frames
12.6 The Choice of Alignment System

13 Coordinate System Networks (FrameSets)
13.1 The FrameSet Model
13.2 Creating a FrameSet
13.3 Adding New Frames to a FrameSet
13.4 The Base and Current Frames
13.5 Referring to the Base and Current Frames
13.6 Using a FrameSet as a Mapping
13.7 Extracting a Mapping from a FrameSet
13.8 Using a FrameSet as a Frame
13.9 Extracting a Frame from a FrameSet
13.10Removing a Frame from a FrameSet

14 Higher Level Operations on FrameSets
14.1 Creating FrameSets with AST_CONVERT
14.2 Converting between FrameSet Coordinate Systems . .
14.3 Example—Registering Two Images
14.4 Re-Defining a FrameSet Coordinate System
14.5 Example—Binning an Image
14.6 Maintaining the Integrity of FrameSets
14.7 Merging FrameSets

87

89
89
89
89
90
91
92
93

95
95
95
95
96

97
97
97

99

99
101
103
103
104
104

107
107
108
108
109
110
111
111
112
113
113

vi CONTENTS

15 Saving and Restoring Objects (Channels)
15.1 The Channel Model e
15.2 Creating a Channel
15.3 Writing Objects to a Channel oL
15.4 Reading Objects from a Channel
15.5 Saving and Restoring Multiple Objects
15.6 Validating Input oL
15.7 Storing an ID String with an Object
15.8 The Textual Output Format
15.9 Controlling the Amount of Output
15.10Controlling Commenting L L L
15.11Editing Textual Output
15.12Mixing Objects with other Text
15.13Reading Objects from Files oo
15.14Writing Objects to Files L
15.15Reading and Writing Objects to other Places

16 Storing AST Objects in FITS Headers (FitsChans)
16.1 The Native FITS Encoding,
16.2 The FitsChan Model o
16.3 Creating a FitsChan
16.4 Addressing Cards in a FitsChan
16.5 Writing Native Objects to a FitsChan
16.6 Extracting Individual Cards from a FitsChan
16.7 The Native FitsChan Output Format
16.8 Adding Individual Cards to a FitsChan
16.9 Adding Concatenated Cards to a FitsChan
16.10Reading Native Objects From a FitsChan
16.11Saving and Restoring Multiple Objects in a FitsChan
16.12Mixing Native Objects with Other FITS Cards
16.13Finding and Changing Cards in a FitsChan
16.14Source and Sink Routines for FitsChans

17 Using Foreign FITS Encodings
17.1 The Foreign FITS Encodings
17.2 Limitations of Foreign Encodings
17.3 Identifying Foreign Encodings on Input
17.4 Reading Foreign WCS Information from a FITS Header
17.5 Removing WCS Information from FITS Headers—the Destructive Read
17.6 Propagating WCS Information through Data Processing Steps
17.7 Writing Foreign WCS Information to a FITS Header

18 Storing AST Objects as XML (XmlChan)
18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions

19 Reading and writing STC-S descriptions (StcsChans)

20 Creating Your Own Private Mappings (IntraMaps)
20.1 The Need for Extensibility,

CONTENTS

20.2 The IntraMap Model . .
20.3 Limitations of IntraMaps

20.4 Writing a Transformation Routine
20.5 Registering a Transformation Routine

20.6 Creating an IntraMap .

20.7 Restricted Implementations of Transformation Routines
20.8 Variable Numbers of Coordinates
20.9 Adapting a Transformation Routine to Individual IntraMaps

20.10Simplifying IntraMaps .

20.11Writing and Reading IntraMaps oo L.
20.12Managing Transformation Routines in Libraries

21 Producing Graphical Output (Plots)

21.1 The Plot Model
21.2 Plotting Symbols

21.3 Plotting Geodesic Curves

21.4 Plotting Curves Parallel to Axes
21.5 Plotting Generalized Curves L

21.6 Clipping

21.7 Using a Plot asa Mapping o

21.8 Using a Plot as a Frame

21.9 Regions of Valid Physical Coordinates

21.10Plotting Borders
21.11Plotting Text
21.12Plotting a Grid

21.13Controlling the Appearance of Sub-strings
21.14Producing Logarithmic Axes L
21.15Choosing a Graphics Packageo L

22 Compiling and Linking Software that Uses AST

22.1 Accessing AST Include Files
22.2 Linking with AST Facilities
22.3 Building ADAM Applications that Use AST

| B O Q W »

The AST Class Hierarchy

AST Routine Descriptions

AST Attribute Descriptions

AST Class Descriptions

UNIX Command Descriptions

FITS-WCS Coverage

F.1 Paper I - General Linear Coordinates
F.1.1 Requirements for a Successful Write Operation
F.1.2 Use and Choice of CTYPE: keywords
F.1.3 Choice of Reference Point

vii

165
165
166
167
168
169
170
171
171
173
173

175
175
175
176
177
177
177
178
178
179
179
180
180
180
181
182

183
183
183
184

185

187

417

525

571

viii

CONTENTS

F.1.4 Choice of Axis Ordering S77
F.1.5 Alternate Axis Descriptions S77

F.2 Paper II - Celestial Coordinates 578
F.2.1 Requirements for a Successful Write Operation 578
F.2.2 Choice of LONPOLE/LATPOLE 578
F.2.3 User Defined Fiducial Points 580
F.2.4 Common Non-Standard Features 580

F.3 Paper III - Spectral Coordinates 581
F.3.1 Requirements for a Successful Write Operation 581
F.3.2 Common Non-Standard Features 583

F.4 Paper IV - Coordinate Distortions 583
F.4.1 The “SIP” distortion code 583
Changes and New Features 584
G.1 Changes Introduced in V1.1 584
G.2 Changes Introduced in V1.2 L Lo 585
G.3 Changes Introduced in V1.3 L 586
G.4 Changes Introduced in V1.4 L 587
G.5 Changes Introduced in V1.5 588
G.6 Changes Introduced in V1.6 589
G.7 Changes Introduced in V1.7 591
G.8 Changes Introduced in V1.8-2 Lo 592
G.9 Changes Introduced in V1.8-3 592
G.10 Changes Introduced in V1.8-4 593
G.11 Changes Introduced in V1.8-5 593
G.12 Changes Introduced in V1.8-7 593
G.13 Changes Introduced in V1.8-8 594
G.14 Changes Introduced in V1.8-13 594
G.15 Changes Introduced in V2.0 595
G.16 Changes Introduced in V3.0 L 597
G.17 Changes Introduced in V3.1 599
G.18 Changes Introduced in V3.2 o 600
G.19 Changes Introduced in V3.3 601
G.20 Changes Introduced in V3.4 602
G.21 Changes Introduced in V3.5 Lo 603
G.22 Changes Introduced in V3.6 604
G.23 Changes Introduced in V3.7 604
G.24 Changes Introduced in V4.0 604
G.25 Changes Introduced in V4.1 L 605
G.26 Changes Introduced in V4.2 L 605
G.27 Changes Introduced in V4.3 Lo 606
G.28 Changes Introduced in V4.4 L 607
G.29 Changes Introduced in V4.5 L 608
G.30 Changes Introduced in V4.6 609
G.31 Changes Introduced in V5.0 609
G.32 Changes Introduced in V5.1 L 609
G.33 Changes Introduced in V5.2 610

G.34 Changes Introduced in V5.3 611

SUN/210.27 ix

G.35 Changes Introduced in V5.3-1 612
G.36 Changes Introduced in V5.3-2 613
G.37 Changes Introduced in V5.4-0 613
G.38 Changes Introduced in V5.5-0 614
G.39 Changes Introduced in V5.6-0 614
G.40 ChangesIntroduced in V5.6-1 L o 614
G.41 Changes Introduced in V5.7-0 615
G.42 Changes Introduced in V5.7-1 L o 615
G.43 Changes Introduced in V5.7-2 616
G.44 Changes Introduced in V6.0 Lo 616
G.45 Changes Introduced in V6.0-1 617
G.46 Changes Introduced in V7.0.0 L o 617
G.47 Changes Introduced in V7.0.1 617
G.48 Changes Introduced in V7.0.2 617
G.49 Changes Introduced in V7.0.3 618
G.50 Changes Introduced in V7.0.4 618
G.51 Changes Introduced in V7.0.5 Lo 618
G.52 Changes Introduced in V7.0.6 618
G.53 Changes Introduced in V7.1.0 619
G.54 Changes Introduced in V7.1.1 619
G.55 Changes Introduced in V7.2.0 619
G.56 Changes Introduced in V7.3.0 619
G.57 Changes Introduced in V7.3.1 620
G.58 Changes Introduced in V7.3.2 620
G.59 Changes Introduced in V7.3.3 620

G.60 Changes Introduced in V7.3.4 e 621

SUN/210.27

AST
A Library for Handling
World Coordinate Systems
in Astronomy

V7.3

This is the Fortran version of this document.
For the C version, please see SUN/211.

1 Introduction

Welcome to the AST library. If you are writing software for astronomy and need to use celestial
coordinates (e.g. RA and Dec), spectral coordinates (e.g. wavelength, frequency, etc.), or other
coordinate system information, then this library should be of interest. It provides solutions for
most of the problems you will meet and allows you to write robust and flexible software. It is
able to read and write WCS information in a variety of formats, including FITS-WCS.

1.1 What Problems Does AST Tackle?

Here are some of the main problems you may face when handling world coordinate system
(WCS) information and the solutions that AST provides:

1. The Variety of Coordinate Systems

Astronomers use a wide range of differing coordinate systems to describe positions within
a variety of physical domains. For instance, there are a large number of celestial coordinate
systems in use within astronomy to describe positions on the sky. Understanding these,
and knowing how to convert coordinates between them, can require considerable expertise.
It can also be difficult to decide which of them your software should support. The same
applies to coordinate systems describing other domains, such as position within an electro-
magnetic spectrum.

Solution. AST has built-in knowledge of many coordinate systems and allows you to
convert freely between them without specialist knowledge. This avoids the need to embed
details of specific coordinate systems in your software. You also benefit automatically
when new coordinate systems are added to AST.

2 1 INTRODUCTION

2. Storing and Retrieving WCS Information
Storing coordinate system information in astronomical datasets and retrieving it later
can present a considerable challenge. Typically, it requires knowledge of rather complex
conventions (e.g. FITS) which are low-level, often mis-interpreted and may be subject to
change. Exchanging information with other software systems is further complicated by
the number of different conventions in use.

Solution. AST combines a unifying high-level description of WCS information with the
ability to save and restore this using a variety of formats. Details of the formats, which
include FITS, are handled internally by AST. This frees you from the need to understand
them or embed the details in your software. Again, you benefit automatically when new
formats are added to AST.

3. Generating Graphical Output
Producing graphical displays involving curvilinear coordinate systems, such as celestial
coordinate grids, can be complicated. Particular difficulties arise when handling large
areas of sky, the polar regions and discontinuous (e.g. segmented) sky projections. Even
just numbering and labelling curvilinear axes is rarely straightforward.

Solution. AST provides plotting facilities especially designed for use with curvilinear
coordinate systems. These include the plotting of axes and complete labelled coordinate
grids. A large number of options are provided for tailoring the output to your specific
needs. Three dimensional coordinate grids can also be produced.

4. Aligning Data from Different Sources
One of the main uses of coordinate systems is to facilitate the inter-comparison of data
from different sources. A typical use might be to plot (say) radio contours over an optical
image. In practice, however, different celestial coordinate systems may have been used,
making accurate alignment far from simple.

Solution AST provides a one-step method of aligning datasets, searching for all possible
intermediate coordinate systems. This makes it simple to directly inter-relate the pixel
coordinates of different datasets.

5. Handling Different Types of Coordinate System
Not all coordinate systems used in astronomy are celestial ones, so if you are writing
general-purpose software such as (say) a display tool, you may also need to handle axes
representing wavelength, distance, time or whatever else comes along. Obviously, you
would prefer not to handle each one as a special case.

Solution AST uses the same flexible high-level model to describe all types of coordinate
system. This allows you to write software that handles different kinds of coordinate axis
without introducing special cases.

1.2 Other Design Objectives

As well as its scientific objectives, the AST library’s design includes a number of technical
criteria intended to make it applicable to as wide a range of projects as possible. The main
considerations are described here:

1.2 Other Design Objectives 3

1. Minimum Software Dependencies. The AST library depends on no other other soft-

Warel .

2. Environment Independence. AST is designed so that it can operate in a variety of
“programming environments” and is not tied to any particular one. To allow this, it uses
simple, flexible interfaces to obtain the following services:

e Data Storage. Data I/O operations are based on text and/or FITS headers. This
makes it easy to interface to a wide variety of astronomical data formats in a machine-
independent way.

e Graphics. Graphical output is produced via a simple generic graphics interface,
which may easily be re-implemented over different graphics systems. AST pro-
vides a default implementation based on the widely-used PGPLOT graphics system
(SUN/15).

e Error Handling. Error messages are written to standard error by default, but go
through a simple generic interface similar to that used for graphics (above). This
permits error message delivery via other routes when necessary (e.g. in a graphical
interface).

3. Multiple Language Support. AST has been designed to be called from more than one
language. Both Fortran and C interfaces are available (see SUN/211 for the C version)
and use from C++ is also straightforward if the C interface is included using;:

extern "C" {
#include "ast.h"

3

A JNI interface (known as “JNIAST” - see http://www.starlink.ac.uk/jniast/) has also
been developed by Starlink which allows AST to be used from Java.

4. Object Oriented Design. AST uses “object oriented” techniques internally in order
to provide a flexible and easily-extended programming model. A fairly traditional call-
ing interface is provided, however, so that the library’s facilities are easily accessible to
programmers using Fortran and C.

5. Portability. AST is implemented entirely in ANSI standard C and, when called wvia its
C interface, makes no explicit use of any machine-dependent facilities.

The Fortran interface is, unavoidably, machine dependent. However, the potential for
problems has been minimised by encapsulating the interface layer in a compact set of C
macros which facilitate its transfer to other platforms. No Fortran compiler is needed to
build the library.

Currently, AST is supported by Starlink on PC Linux, Sun Solaris and Tru64 Unix (for-
merly DEC UNIX) platforms.

Tt comes with bundled copies of the IAU SOFA and Starlink PAL libraries which are built at the same time
as the other AST internal libraries. Alternatively, external PAL and SOFA libraries may be used by specifying
the “--with-external_pal” option when configuring AST

4 1 INTRODUCTION

1.3 What Does “AST” Stand For?

The library name “AST” stands for “ASTrometry Library”. The name arose when it was thought
that knowledge of “astrometry” (i.e. celestial coordinate systems) would form the bulk of the
library. In fact, it turns out that astrometry forms only a minor component, but the name AST
has stuck.

2 Overview of AST Concepts

This section presents a brief overview of AST concepts. It is intended as a basic orientation
course before you move on to the more technical considerations in subsequent sections.

2.1 Relationships Between Coordinate Systems

The relationships between coordinate systems are represented in AST by Objects called Map-
pings. A Mapping does not represent a coordinate system itself, but merely the process by which
you move from one coordinate system to another related one.

A convenient picture of a Mapping is as a “black box” (Figure 1) into which you can feed
sets of coordinates. For each set you feed in, the Mapping returns a corresponding set of

Forward
 ———
Input . Output
Coordinates A Mappmg Coordinates
-
Inverse

Figure 1: A Mapping viewed as a “black box” for transforming coordinates.

transformed coordinates. Since each set of coordinates represents a point in a coordinate space,
the Mapping acts to inter-relate corresponding positions in the two spaces, although what these
spaces represent is unspecified. Notice that a Mapping need not have the same number of input
and output coordinates. That is, the two coordinate spaces which it inter-relates need not have
the same number of dimensions.

In many cases, the transformation can, in principle, be performed in either direction: either
from the input coordinate space to the output, or vice versa. The first of these is termed the
forward transformation and the other the inverse transformation.

Further reading: For a more complete discussion of Mappings, see §5.

2.2 Mappings Available

The basic concept of a Mapping (§2.1) is rather generic and obviously it is necessary to have
specific Mappings that implement specific relationships between coordinate systems. AST pro-
vides a range of these, to perform transformations such as the following and, where appropriate,
their inverses:

e Conversions between various celestial coordinate systems (the SlaMap).

e Conversions between various spectral coordinate systems (the SpecMap and GrismMap).

6 2 OVERVIEW OF AST CONCEPTS

-

CmpMap

*—>o— >
Mapping A Mapping B
——»o—>»

o

Figure 2: A CmpMap (compound Mapping) composed of two component Mappings joined in
series. The output coordinates of the first Mapping feed into the input coordinates of the second
one, so that the whole entity behaves like a single Mapping.

e Conversions between various time systems (the TimeMap).

e Conversion between 2-dimensional spherical celestial coordinates (longitude and latitude)
and a 3-dimensional vectorial positions (the SphMap).

e Various projections of the celestial sphere on to 2-dimensional coordinate spaces—i.e. map
projections (the DssMap and WesMap).

e Permutation, introduction and elimination of coordinates (the PermMap).

e Various linear coordinate transformations (the MatrixMap, WinMap, ShiftMap and ZoomMap).
e General N-dimensional polynomial transformations (the PolyMap).

e Lookup tables (the LutMap).

e General-purpose transformations expressed using arithmetic operations and functions sim-
ilar to those available in Fortran (the MathMap).

e Transformations for internal use within a program, based on private transformation rou-
tines which you write yourself in Fortran (the IntraMap).

Further reading: For a more complete description of each of the Mappings mentioned above,
see its entry in Appendix D. In addition, see the discussion of the PermMap in §5.10, the
UnitMap in §5.9 and the IntraMap in §20. The ZoomMap is used as an example throughout §4.

2.3 Compound Mappings

The Mappings described in §2.2 provide a set of basic building blocks from which more complex
Mappings may be constructed. The key to doing this is a type of Mapping called a CmpMap, or
compound Mapping. A CmpMap’s role is, in principle, very simple: it allows any other pair of
Mappings to be joined together into a single entity which behaves as if it were a single Mapping.
A CmpMap is therefore a container for another pair of Mappings.

A pair of Mappings may be combined using a CmpMap in either of two ways. The first of these,
in series, is illustrated in Figure 2. Here, the transformations implemented by each component
Mapping are performed one after the other, with the output from the first Mapping feeding into

2.4 Representing Coordinate Systems 7

/ CmpMap

Mapping A

Mapping B

Figure 3: A CmpMap composed of two Mappings joined in parallel. Each component Mapping
acts on a complementary subset of the input and output coordinates.

the second. The second way, in parallel, is shown in Figure 3. In this case, each Mapping acts
on a complementary subset of the input and output coordinates.?

The CmpMap forms the key to building arbitrarily complex Mappings because it is itself a form
of Mapping. This means that a CmpMap may contain other CmpMaps as components (e.g.
Figure 4). This nesting of CmpMaps can be repeated indefinitely, so that complex Mappings
may be built in a hierarchical manner out of simper ones. This gives AST great flexibility in
the coordinate transformations it can describe.

Further reading: For a more complete description of CmpMaps, see §6. Also see the CmpMap
entry in Appendix D.

2.4 Representing Coordinate Systems

While Mappings (§2.1) represent the relationships between coordinate systems in AST, the
coordinate systems themselves are represented by Objects called Frames (Figure 5). A Frame
is similar in concept to the frame you might draw around a graph. It contains information
about the labels which appear on the axes, the axis units, a title, knowledge of how to format
the coordinate values on each axis, etc. An AST Frame is not, however, restricted to two
dimensions and may have any number of axes.

A basic Frame may be used to represent a Cartesian coordinate system by setting values for
its attributes (all AST Objects have values associated with them called attributes, which may
be set and enquired). Usually, this would involve setting appropriate axis labels and units, for
example. Routines are provided for use with Frames to perform operations such as formatting
coordinate values as text, calculating distances between points, interchanging axes, etc.

2A pair of Mappings can be combined in a third way using a TranMap. A TranMap allows the forward
transformation of one Mapping to be combined with the inverse transformation of another to produce a single
Mapping.

8 2 OVERVIEW OF AST CONCEPTS

CmpMap

Mapping B

°
Y

Mapping A

°
Y

Mapping C

Figure 4: CmpMaps (compound Mappings) may be nested in order to construct complex Map-
pings out of simpler building blocks.

SkyFrame
RA
Dec

SkyFrame

Figure 5: (a) A basic Frame is used to represent a Cartesian coordinate system, here 2-
dimensional. (b) A SkyFrame represents a (spherical) celestial coordinate system. (c) The
axis order of any Frame may be permuted to match the coordinate space it describes.

2.5 Networks of Coordinate Systems 9

4 CmpFrame
(SkyFrame
RA)
Dec
o
Frame
A
Wavelength

Figure 6: A CmpFrame (compound Frame) formed by combining two simpler Frames. Note
how the special relationship which exists between the RA and Dec axes is preserved within this
data structure. As with compound Mappings (Figure 4), CmpFrames may be nested in order
to build more complex Frames.

There are several more specialised forms of Frame, which provide the additional functionality
required when handling coordinates within some specific physical domain. This ranges from
tasks such as formatting axis values, to complex tasks such as determining the transformation
between any pair of related coordinate systems. For instance, the SkyFrame (Figure 5b,c),
represents celestial coordinate systems, the SpecFrame represents spectral coordinate systems,
and the TimeFrame represents time coordinate systems. All these provide a wide range of
different systems for describing positions within their associated physical domain, and these
may be selected by setting appropriate attributes.

As with compound Mappings (§2.3), it is possible to merge two Frames together to form a com-
pound Frame, or CmpFrame, in which both sets of axes are combined. One could, for example,
have celestial coordinates on two axes and an unrelated coordinate (wavelength, perhaps) on a
third (Figure 6). Knowledge of the relationships between the axes is preserved internally by the
process of constructing the CmpFrame which represents them.

Further reading: For a more complete description of Frames see §7, for SkyFrames see §8 and
for SpecFrames see §9. Also see the Frame, SkyFrame, SpecFrame, TimeFrame and CmpFrame
entries in Appendix D.

2.5 Networks of Coordinate Systems

Mappings and Frames may be connected together to form networks called FrameSets, which
are used to represent sets of inter-related coordinate systems (Figure 7). A FrameSet may
be extended by adding a new Frame to it, together with an associated Mapping which relates
the new coordinate system to one which is already present. This process ensures that there is
always exactly one path, via Mappings, between any pair of Frames. A function is provided for
identifying this path and returning the complete Mapping.

One of the Frames in a FrameSet is termed its base Frame. This underlies the FrameSet’s
purpose, which is to calibrate datasets and other entities by attaching coordinate systems to

10 2 OVERVIEW OF AST CONCEPTS

Frame 1 Current Frame
Mappmg

Frame 3

Mappmg

Frame:2

Frames

Figure 7: A FrameSet is a network of Frames inter-connected by Mappings such that there is
exactly one conversion path, via Mappings, between any pair of Frames.

2.6 Input/Output Facilities 11

them. In this context, the base Frame represents the “native” coordinate system (for example,
the pixel coordinates of an image). Similarly, one Frame is termed the current Frame and
represents the “currently-selected” coordinates. It might, typically, be a celestial or spectral
coordinate system and would be used during interactions with a user, as when plotting axes on
a graph or producing a table of results. Other Frames within the FrameSet represent a library
of alternative coordinate systems which a software user can select by making them current.

Further reading: For a more complete description of FrameSets, see §13 and §14. Also see
the FrameSet entry in Appendix D.

2.6 Input/Output Facilities

AST allows you to convert any kind of Object into a stream of text which contains a full
description of that Object. This text may be written out by one program and read back in by
another, thus allowing the original Object to be reconstructed.

The filter which converts Objects into text and back again is itself a kind of Object, called a
Channel. A Channel provides a number of options for controlling the information content of the
text, such as the addition of comments for human interpretation. It is also possible to intercept
the text being processed by a Channel so that it may be redirected to/from any chosen external
data store, such as a text file, an astronomical dataset, or a network connection.

The text format used by the basic Channel class is peculiar to the AST library - no other
software will understand it. However, more specialised forms of Channel are provided which use
text formats more widely understood.

To further facilitate the storage of coordinate system information in astronomical datasets, a
more specialised form of Channel called a FitsChan is provided. Instead of using free-format
text, a FitsChan converts AST Objects to and from FITS header cards. It also allows the
information to be encoded in the FITS cards in a number of ways (called encodings), so that
WCS information from a variety of sources can be handled.

Another sub-class of Channel, called XmlChan, is a specialised form of Channel that stores
the text in the form of XML markup. Currently, two markup formats are provided by the
XmlChan class, one is closely related to the text format produced by the basic Channel class
(currently, no schema or DTD is available describing this format). The other is a subset of an
early draft of the IVOA Space-Time-Coordinates XML (STC-X) schema (V1.20) described at
http://www.ivoa.net/Documents/ WD /STC/STC-20050225.html 3. The version of STC-X that
has been adopted by the IVOA differs in several significant respects from V1.20, and therefore
this XmlChan format is of historical interest only.

Finally, the StcsChan class provides facilities for reading and writing IVOA STC-S region de-
scriptions. STC-S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string
syntax that allows simple specification of STC metadata. AST supports a subset of the STC-S
specification, allowing an STC-S description of a region within an AST-supported astronomical
coordinate system to be converted into an equivalent AST Region object, and vice-versa.

Further reading: For a more complete description of Channels see §15 and for FitsChans see
§16 and §17. Also see the Channel and FitsChan entries in Appendix D and the Encoding entry
in Appendix C.

3XML documents which use only the subset of the STC schema supported by AST can be read by the XmlChan
class to produce corresponding AST objects (subclasses of the Stc class). However, the reverse is not possible.
That is, AST objects can not currently be written out in the form of STC documents.

12 2 OVERVIEW OF AST CONCEPTS

Fcliptic coordinates; mean equinox J2000.0

Figure 8: A labelled coordinate grid for an all-sky zenithal equal area projection in ecliptic
coordinates. This was composed and drawn via a Plot using a single subroutine call.

2.7 Producing Graphical Output

Two dimensional graphical output is supported by a specialised form of FrameSet called a Plot,
whose base Frame corresponds with the native coordinates of the underlying graphics system.
Plotting operations are specified in physical coordinates which correspond with the Plot’s current
Frame. Typically, this might be a celestial coordinate system.

Three dimensional plotting is also supported, via the Plot3D class - sub-class of Plot.

Operations, such as drawing lines, are automatically transformed from physical to graphical
coordinates before plotting, using an adaptive algorithm which ensures smooth curves (because
the transformation is usually non-linear). “Missing” coordinates (e.g. graphical coordinates
which do not project on to the celestial sphere), discontinuities and generalised clipping are all
consistently handled. It is possible, for example, to plot in equatorial coordinates and clip in
galactic coordinates. The usual plotting operations are provided (text, markers), but a geodesic
curve replaces the primitive straight line element. There is also a separate function for drawing
axis lines, since these are normally not geodesics.

In addition to drawing coordinate grids over an area of the sky, another common use of the Plot
class is to produce line plots such as flux against wavelength, displacement again time, etc. For
these situations the current Frame of the Plot would be a compound Frame (CmpFrame) con-
taining a pair of 1-dimensional Frames - the first representing the X axis quantity (wavelength,
time, etc), and the second representing the Y axis quantity (flux, displacement, etc). The Plot
class includes an option for axes to be plotted logarithmically.

Perhaps the most useful graphics function available is for drawing fully annotated coordinate
grids (e.g. Figure 8). This uses a general algorithm which does not depend on knowledge of

2.7 Producing Graphical Output 13

the coordinates being represented, so can also handle programmer-defined coordinate systems.
Grids for all-sky projections, including polar regions, can be drawn and most aspects of the
output (colour, line style, etc.) can be adjusted by setting appropriate Plot attributes.

Further reading: For a more complete description of Plots and how to produce graphical
output, see §21. Also see the Plot entry in Appendix D.

14

2 OVERVIEW OF AST CONCEPTS

15

3 How To...

For those of you with a plane to catch, this section provides some instant templates and recipes
for performing the most commonly-required operations using AST, but without going into detail.
The examples given (sort of) follow on from each other, so you should be able to construct a
variety of programs by piecing them together. Note that some of them appear longer than they
actually are, because we have included plenty of comments and a few options that you probably
won’t need.

If any of this material has you completely baffled, then you may want to read the introduction
to AST programming concepts in §4 first. Otherwise, references to more detailed reading are
given after each example, just in case they don’t quite do what you want.

3.1 ...Obtain and Install AST

The AST library is available both as a stand-alone package and also as part of the Starlink
Software Collection?. If your site has the Starlink Software Collection installed then AST should
already be available.

If not, you can download the AST library by itself from http://www.starlink.ac.uk/ast/.

3.2 ...Structure an AST Program

An AST program normally has the following structure:

* Include the interface to the AST library.
INCLUDE ’AST_PAR’

* Declare an integer status variable.
INTEGER STATUS
<maybe other declarations>

* Initialise the status to zero.
STATUS = 0O
<maybe some Fortran statements>

* Enclose the parts which use AST between AST_BEGIN and AST_END calls.
CALL AST_BEGIN(STATUS)
<Fortran statements which use AST>
CALL AST_END(STATUS)

<maybe more Fortran statements>
END

The use of AST_BEGIN and AST_END is optional, but has the effect of tidying up after you
have finished using AST, so is normally recommended. For more details of this, see §4.10. For
details of how to access the AST_PAR include file, see §22.1.

“The Starlink Software Collection can be downloaded from http://www.starlink.ac.uk/Download, .

16 3 HOW TO...

3.3 ...Build an AST Program

To build a simple AST program that doesn’t use graphics, use:
£77 program.f -L/star/lib -I/star/include ‘ast_link‘ -o program

On Linux systems you should usually use g77 -fno-second-underscore in place of £77 - see
“Software development on Linux” in SUN/212.

To build a program which uses PGPLOT for graphics, use:
77 program.f -L/star/lib ‘ast_link -pgplot‘ -o program

again using g77 -fno-second-underscore in place of £77 on Linux systems.

For more details about accessing AST include files, see §22.1. For more details about linking
programs, see §22.2 and the description of the “ast_link” command in Appendix E.

3.4 ...Read a WCS Calibration from a Dataset

Precisely how you extract world coordinate system (WCS) information from a dataset obviously
depends on what type of dataset it is. Usually, however, you should be able to obtain a set
of FITS header cards which contain the WCS information (and probably much more besides).
Suppose that CARDS is an array of character strings containing a complete set of FITS header
cards and NCARD is the number of cards. Then proceed as follows:

INTEGER FITSCHAN, ICARD, NCARD, WCSINFO
CHARACTER * (80) CARDS(NCARD)

* Create a FitsChan and fill it with FITS header cards.
FITSCHAN = AST_FITSCHAN(AST_NULL, AST_NULL, > ’, STATUS)
DO 1 ICARD = 1, NCARD
CALL AST_PUTFITS(FITSCHAN, CARDS(ICARD), .FALSE., STATUS)
1 CONTINUE

* Rewind the FitsChan and read WCS information from it.
CALL AST_CLEAR(FITSCHAN, ’Card’, STATUS)
WCSINFO = AST_READ(FITSCHAN, STATUS)

The result should be a pointer, WCSINFO, to a FrameSet which contains the WCS information.
This pointer can now be used to perform many useful tasks, some of which are illustrated in the
following recipes.

Some datasets which do not easily yield FITS header cards may require a different approach,
possibly involving use of a Channel or XmlChan (§15) rather than a FitsChan. In the case of
the Starlink NDF data format, for example, all the above may be replaced by a single call to
the routine NDF_GTWCS—see SUN/33. The whole process can probably be encapsulated in
a similar way for most other data systems, whether they use FITS header cards or not.

For more details about reading WCS information from datasets, see §17.3 and §17.4. For a more
general description of FitsChans and their use with FITS header cards, see §16 and §17. For
more details about FrameSets, see §13 and §14.

3.5 ... Validate WCS Information 17

3.5 ...Validate WCS Information

Once you have read WCS information from a dataset, as in §3.4, you may wish to check that
you have been successful. The following will detect and classify the things that might possibly
go wrong:

IF (STATUS .NE. O) THEN
<an error occurred (a message will have been issued)>
ELSE IF (WCSINFO .EQ. AST__NULL) THEN
<there was no WCS information present>
ELSE IF (AST_GETC(WCSINFO, ’Class’, STATUS) .NE. ’FrameSet’) THEN
<something unexpected was read (i.e. not a FrameSet)>
ELSE
<WCS information was read OK>
END IF

For more information about detecting errors in AST routines, see §4.13. For details of how to
validate input data read by AST, see §15.6 and §17.4.

3.6 ...Display AST Data

If you have a pointer to any AST Object, you can display the data stored in that Object in
textual form as follows:

CALL AST_SHOW(WCSINFO, STATUS)

Here, we have used a pointer to the FrameSet which we read earlier (§3.4). The result is written
to the program’s standard output stream. This can be very useful during debugging.

For more details about using AST_SHOW, see §4.4. For information about interpreting the
output, also see §15.8.

3.7 ...Convert Between Pixel and World Coordinates

You may use a pointer to a FrameSet, such as we read in §3.4, to transform a set of points
between the pixel coordinates of an image and the associated world coordinates. If you are
working in two dimensions, proceed as follows:

INTEGER N
DOUBLE PRECISION XPIXEL(N), YPIXEL(N)
DOUBLE PRECISION XWORLD(N), YWORLD(N)

CALL AST_TRAN2(WCSINFO, N, XPIXEL, YPIXEL, .TRUE.,
: XWORLD, YWORLD, STATUS)

18 3 HOW TO...

Here, N is the number of points to be transformed, XPIXEL and YPIXEL hold the pixel coor-
dinates, and XWORLD and YWORLD receive the returned world coordinates.> To transform

in the opposite direction, interchange the two pairs of arrays (so that the world coordinates are
given as input) and change the fifth argument of AST_TRAN2 to .FALSE..

To transform points in one dimension, use AST_TRANI1. In any other number of dimensions
(or if the number of dimensions is initially unknown), use AST_TRANN. These routines are
described in Appendix B.

For more information about transforming coordinates, see §4.8 and §13.6. For details of how to
handle missing coordinates, see §5.8.

3.8 ...Test if a WCS is a Celestial Coordinate System

The world coordinate system (WCS) currently associated with an image may often be a celestial
coordinate system, but this need not necessarily be the case. For instance, instead of right
ascension and declination, an image might have a WCS with axes representing wavelength and
slit position, or maybe just plain old pixels.

If you have obtained a WCS calibration for an image, as in §3.4, in the form of a pointer
WCSINFO to a FrameSet, then you may determine if the current coordinate system is a celestial
one or not, as follows:

INTEGER FRAME
LOGICAL ISSKY

* (Obtain a pointer to the current Frame and determine if it is a

* SkyFrame.
FRAME = AST_GETFRAME(WCSINFO, AST__CURRENT, STATUS)
ISSKY = AST_ISASKYFRAME(FRAME, STATUS)

CALL AST_ANNUL(FRAME, STATUS)

This will set ISSKY to .TRUE. if the WCS is a celestial coordinate system, and to .FALSE.
otherwise.

3.9 ...Test if a WCS is a Spectral Coordinate System

Testing for a spectral coordinate system is basically the same as testing for a celestial coordinate
system (see the previous section). The one difference is that you use the AST_ISASPECFRAME
routine in place of the AST_ISASKYFRAME routine.

By pixel coordinates, we mean a coordinate system in which the first pixel in the image is centred on (1,1)
and each pixel is a unit square. Note that the world coordinates will not necessarily be celestial coordinates, but
if they are, then they will be in radians.

3.10 ...Format Coordinates for Display 19

3.10 ...Format Coordinates for Display

Once you have converted pixel coordinates into world coordinates (§3.7), you may want to
format them as text before displaying them. Typically, this would convert from (say) radians
into something more comprehensible. Using the FrameSet pointer WCSINFO obtained in §3.4
and a pair of world coordinates XW and YW (e.g. see §3.7), you could proceed as follows:

CHARACTER * (20) XTEXT, YTEXT
DOUBLE PRECISION XW, YW

XTEXT
YTEXT

AST_FORMAT(WCSINFO, 1, XW, STATUS)
AST_FORMAT(WCSINFO, 2, YW, STATUS)

WRITE (*, 199) XTEXT, YTEXT
199 FORMAT(’Position = ’, A, ’, 7, A)

Here, the second argument to AST_FORMAT is the axis number.

With celestial coordinates, this will usually result in sexagesimal notation, such as “12:34:56.7”.
However, the same method may be applied to any type of coordinates and appropriate formatting
will be employed.

For more information about formatting coordinate values and how to control the style of for-
matting used, see §7.6 and §8.6. If necessary, also see §7.7 for details of how to “normalise” a set
of coordinates so that they lie within the standard range (e.g. 0 to 24 hours for right ascension
and £90° for declination).

3.11 ...Display Coordinates as they are Transformed

In addition to formatting coordinates as part of a program’s output, you may also want to
examine coordinate values while debugging your program. To save time, you can “eavesdrop”
on the coordinate values being processed every time they are transformed. For example, when
using the FrameSet pointer WCSINFO obtained in §3.4 to transform coordinates (§3.7), you
could inspect the coordinate values as follows:

CALL AST_SET(WCSINFO, ’Report=1’, STATUS)
CALL AST_TRAN2(WCSINFO, N, XPIXEL, YPIXEL, .TRUE.,
: XWORLD, YWORLD, STATUS)

By setting the FrameSet’s Report attribute to 1, coordinate transformations are automatically
displayed on the program’s standard output stream, appropriately formatted, for example:

(42.1087, 20.2717) --> (2:06:03.0, 34:22:39)
(43.0197, 21.1705) --> (2:08:20.6, 35:31:24)
(43.9295, 22.0716) -—> (2:10:38.1, 36:40:09)
(44.8382, 22.9753) --> (2:12:55.6, 37:48:55)
(45.7459, 23.8814) -—> (2:15:13.1, 38:57:40)

20 3 HOW TO...

(46.6528, 24.7901) -—> (2:17:30.6, 40:06:25)
(47.5589, 25.7013) --> (2:19:48.1, 41:15:11)
(48.4644, 26.6149) -—> (2:22:05.6, 42:23:56)
(49.3695, 27.5311) --> (2:24:23.1, 43:32:41)
(50.2742, 28.4499) -—> (2:26:40.6, 44:41:27)

For a complete description of the Report attribute, see its entry in Appendix C. For further
details of how to set and enquire attribute values, see §4.6 and §4.5.

3.12 ...Read Coordinates Entered by a User

In addition to writing out coordinate values generated by your program (§3.10), you may also
need to accept coordinates entered by a user, or perhaps read from a file. In this case, you will
probably want to allow “free-format” input, so that the user has some flexibility in the format
that can be used. You will probably also want to detect any typing errors.

Let’s assume that you want to read a number of lines of text, each containing the world coordi-
nates of a single point, and to split each line into individual numerical coordinate values. Using
the FrameSet pointer WCSINFO obtained earlier (§3.4), you could proceed as follows:

CHARACTER TEXT * (80)
DOUBLE PRECISION COORD(10)
INTEGER IAXIS, N, NAXES, T

* Obtain the number of coordinate axes (if not already known).
NAXES = AST_GETI(WCSINFO, ’Naxes’, STATUS)

Loop to read each line of input text, in this case from the
standard input channel (your programming environment will probably
provide a better way of reading text than this). Set the index T to
the start of each line read.
2 CONTINUE
READ(*, ’(A)’, END=99) TEXT
T=1

* ¥ ¥ ¥

* Attempt to read a coordinate for each axis.
DO 3 IAXIS = 1, NAXES
N = AST_UNFORMAT(WCSINFO, IAXIS, TEXT(T :), COORD(IAXIS),
STATUS)

If nothing was read and this is not the first axis and the end of
the text has not been reached, try stepping over a separator and
reading again.

IF ((N .EQ. O) .AND. (IAXIS .GT. 1) .AND.

(T .LT. LEN(STRING))) THEN
=T+ 1
AST_UNFORMAT(WCSINFO, IAXIS, TEXT(T :),
COORD(IAXIS), STATUS)

T
N

END IF

3.13 ...Create a New WCS Calibration 21

* Quit if nothing was read, otherwise move on to the next coordinate.
IF (N .EQ. 0) GO TO 4
T=T+N

3 CONTINUE

4 CONTINUE

* Test for the possible errors that may occur...

* Error detected by AST (a message will have been issued).
IF (STATUS .NE. 0) THEN
GO TO 99

* Error in input data at character TEXT(T + N : T + N).
ELSE IF ((T .LT. LEN(STRING)) .OR. (N .EQ. O)) THEN
<handle the error, or report your own message here>
GO TO 99

ELSE
<coordinates were read 0K>
END IF

* Return to read the next input line.
GO TO 2
99 CONTINUE

This algorithm has the advantage of accepting free-format input in whatever style is appropriate
for the world coordinates in use (under the control of the FrameSet whose pointer you provide).
For example, wavelength values might be read as floating point numbers (e.g. “1.047” or “4787"),
whereas celestial positions could be given in sexagesimal format (e.g. “12:34:56” or “12 34.5”)
and would be converted into radians. Individual coordinate values may be separated by white
space and/or any non-ambiguous separator character, such as a comma.

For more information on reading coordinate values using the AST_UNFORMAT function, see
§7.8. For details of how sexagesimal formats are handled, and the forms of input that may be
used for for celestial coordinates, see §8.7.

3.13 ...Create a New WCS Calibration

This section describes how to add a WCS calibration to a data set which you are creating from
scratch, rather than modifying an existing data set.

In most common cases, the simplest way to create a new WCS calibration from scratch is prob-
ably to create a set of strings describing the required calibration in terms of the keywords used
by the FITS WCS standard, and then convert these strings into an AST FrameSet describing
the calibration. This FrameSet can then be used for many other purposes, or simply stored in
the data set.

The full FITS-WCS standard is quite involved, currently running to four separate papers, but
the basic kernel is quite simple, involving the following keywords (all of which end with an
integer axis index, indicated below by < i >):

22 3 HOW TO...

CRPIX;iy,
hold the pixel coordinates at a reference point

CRVAL;i;,
hold the corresponding WCS coordinates at the reference point

CTYPE;i;
name the quantity represented by the WCS axes, together with the projection algorithm
used to convert the scaled and rotated pixel coordinates to WCS coordinates.

CDji;_ij.
a set of keywords which specify the elements of a matrix. This matrix scales pixel offsets
from the reference point into the offsets required as input by the projection algorithm
specified by the CTYPE keywords. This matrix specifies the scale and rotation of the
image. If there is no rotation the off-diagonal elements of the matrix (e.g. CD1_2 and
CD2_1) can be omitted.

As an example consider the common case of a simple 2D image of the sky in which north is
parallel to the second pixel axis and east parallel to the (negative) first pixel axis. The image
scale is 1.2 arc-seconds per pixel on both axes, and the image is presumed to have been obtained
with a tangent plane projection. Furthermore, it is known that pixel coordinates (100.5,98.4)
correspond to an RA of 11:00:10 and a Dec. of -23:26:02. A suitable set of FITS-WCS header
cards could be:

CTYPE1 = ’RA-—-TAN’
CTYPE2 = ’DEC--TAN’

/ Axis 1 represents RA with a tan projection

/ Axis 2 represents Dec with a tan projection
CRPIX1 = 100.5 / Pixel coordinates of reference point
CRPIX2 = 98.4 / Pixel coordinates of reference point
CRVAL1 = 165.04167 / Degrees equivalent of "11:00:10" hours
CRVAL2 = -23.433889 / Decimal equivalent of "-23:26:02" degrees
CDh1_1 = -0.0003333333 / Decimal degrees equivalent of -1.2 arc-seconds
Cb2_2 = 0.0003333333 / Decimal degrees equivalent of 1.2 arc-seconds

Notes:

e a FITS header card begins with the keyword name starting at column 1, has an equals
sign in column 9, and the keyword value in columns 11 to 80.

e string values must be enclosed in single quotes.
e celestial longitude and latitude must both be specified in decimal degrees.
e the CD1_1 value is negative to indicate that RA increases as the first pixel axis decreases.

e the (RA,Dec) coordinates will be taken as ICRS coordinates. For FK5 you should add:

RADESYS
EQUINOX

’FK5’
2005.6

The EQUINOX value defaults to J2000.0 if omitted. FK4 can also be used in place of
FK5, in which case EQUINOX defaults to B1950.0.

3.14 ... Modify a WCS Calibration 23

Once you have created these FITS-WCS header card strings, you should store them in a FitsChan
and then read the corresponding FrameSet from the FitsChan. How to do this is described in
§3.4.

Having created the WCS calibration, you may want to store it in a data file. How to do this is
described in §3.15).°

If the required WCS calibration cannot be described as a set of FITS-WCS headers, then a
different approach is necessary. In this case, you should first create a Frame describing pixel
coordinates, and store this Frame in a new FrameSet. You should then create a new Frame
describing the world coordinate system. This Frame may be a specific subclass of Frame such
as a SkyFrame for celestial coordinates, a SpecFrame for spectral coordinates, a Timeframe for
time coordinates, or a CmpFrame for a combination of different coordinates. You also need
to create a suitable Mapping which transforms pixel coordinates into world coordinates. AST
provides many different types of Mappings, all of which can be combined together in arbitrary
fashions to create more complicated Mappings. The WCS Frame should then be added into the
FrameSet, using the Mapping to connect the WCS Frame with the pixel Frame.

3.14 ...Modify a WCS Calibration

The usual reason for wishing to modify the WCS calibration associated with a dataset is that
the data have been geometrically transformed in some way (here, we will assume a 2-dimensional
image dataset). This causes the image features (stars, galaxies, etc.) to move with respect to
the grid of pixels which they occupy, so that any coordinate systems previously associated with
the image become invalid.

To correct for this, it is necessary to set up a Mapping which expresses the positions of image
features in the new data grid in terms of their positions in the old grid. In both cases, the grid
coordinates we use will have the first pixel centred at (1,1) with each pixel being a unit square.

AST allows you to correct for any type of geometrical transformation in this way, so long as a
suitable Mapping to describe it can be constructed. For purposes of illustration, we will assume
here that the new image coordinates XNEW and YNEW can be expressed in terms of the old
coordinates XOLD and YOLD as follows:

DOUBLE PRECISION XNEW, XOLD, YNEW, YOLD
DOUBLE PRECISION M(4), z(2)

XNEW
YNEW

XOLD * M(1) + YOLD * M(2) + Z(1
) + Z(2

)
XOLD * M(3) + YOLD * M(4)

where M is a 2x2 transformation matrix and Z represents a shift of origin. This is therefore a
general linear coordinate transformation which can represent displacement, rotation, magnifica-
tion and shear.

In AST, it can be represented by concatenating two Mappings. The first is a MatrixMap, which
implements the matrix multiplication. The second is a WinMap, which linearly transforms one

STf you are writing the WCS calibration to a FITS file you obviously have the choice of storing the FITS-WCS
cards directly.

24 3 HOW TO...

coordinate window on to another, but will be used here simply to implement the shift of origin
(alternatively, a ShiftMap could have been used in place of a WinMap). These Mappings may
be constructed and concatenated as follows:

DOUBLE PRECISION INA(2), INB(2), OUTA(2), OUTB(2)
INTEGER MATRIXMAP, WINMAP

* Set up the corners of a unit square.
DATA INA / 2 % 0.0DO /
DATA INB / 2 * 1.0D0O /

* The MatrixMap may be constructed directly from the matrix M.
MATRIXMAP = AST_MATRIXMAP(2, 2, 0, M, ’> ’, STATUS)

For the WinMap, we take the coordinates of the corners of a unit
square (window) and then shift them by the required amounts.

OUTAC 1) = INAC 1) + Z(1)
OUTAC 2) = INAC 2) + Z(2)
OUTB(1) = INB(C 1) + Z(1)
OUTB(2) = INB(2) + Z(2)

* The WinMap will then implement this shift.
WINMAP = AST_WINMAP(2, INA, INB, OUTA, OUTB, ’ ’, STATUS)

Join the two Mappings together, so that they are applied one after
the other.
NEWMAP = AST_CMPMAP(MATRIXMAP, WINMAP, 1, °> °’, STATUS)

You might, of course, create any other form of Mapping depending on the type of geometrical
transformation involved. For an overview of the Mappings provided by AST, see §2.2, and for
a description of the capabilities of each class of Mapping, see its entry in Appendix D. For an
overview of how individual Mappings may be combined, see §2.3 (§6 gives more details).

Assuming you have obtained a WCS calibration for your original image in the form of a pointer to
a FrameSet, WCSINFO1 (§3.4), the Mapping created above may be used to produce a calibration
for the new image as follows:

INTEGER WCSINFO01, WCSINFO2

If necessary, make a copy of the WCS calibration, since we are
about to alter it.
WCSINFO2 = AST_COPY(WCSINFO1, STATUS)

Re-map the base Frame so that it refers to the new data grid
instead of the old one.
CALL AST_REMAPFRAME(WCSINFO02, AST__BASE, NEWMAP, STATUS)

This will produce a pointer, WCSINFO2, to a new FrameSet in which all the coordinate systems
associated with the original image are modified so that they are correctly registered with your
new image instead.

3.15 ... Write a Modified WCS Calibration to a Dataset 25

For more information about re-mapping the Frames within a FrameSet, see §14.4. Also see §14.5
for a similar example to the above, applicable to the case of reducing the size of an image by
binning.

3.15 ... Write a Modified WCS Calibration to a Dataset

If you have modified the WCS calibration associated with a dataset, such as in the example
above (§3.14), then you will need to write the modified version out along with any new data.

In the same way as when reading a WCS calibration (§3.4), how you do this will depend on your
data system, but we will assume that you wish to generate a set of FITS header cards that can
be stored with the data. You should usually make preparations for doing this when you first
read the WCS calibration from your input dataset by modifying the example given in §3.4 as
follows:

INTEGER FITSCHAN1, WCSINFO1
CHARACTER * (20) ENCODE

Create an input FitsChan and fill it with FITS header cards. Note,
if you have all the header cards in a single string, use AST_PUTCARDS in
place of AST_PUTFITS.
FITSCHAN1 = AST_FITSCHAN(AST_NULL, AST_NULL, ’ ’, STATUS)
DO 1 ICARD = 1, NCARD
CALL AST_PUTFITS(FITSCHAN1, CARDS(ICARD), .FALSE., STATUS)
1 CONTINUE

* Note which encoding has been used for the WCS information.
ENCODE = AST_GETC(FITSCHAN1, ’Encoding’, STATUS);

* Rewind the input FitsChan and read the WCS information from it.
CALL AST_CLEAR(FITSCHAN1, ’Card’, STATUS)
WCSINFO1 = AST_READ(FITSCHAN1, STATUS)

Note how we have added an enquiry to determine how the WCS information is encoded in the
input FITS cards, storing the resulting string in the ENCODE variable. This must be done
before actually reading the WCS calibration.

Once you have produced a modified WCS calibration for the output dataset (e.g. §3.14), in the
form of a FrameSet identified by the pointer WCSINFO2, you can produce a new FitsChan
containing the output FITS header cards as follows:

INTEGER FITSCHAN2, JUNK, WCSINFO02

* Make a copy of the input FitsChan, AFTER the WCS information has

* been read from it. This will propagate all the input FITS header

* cards, apart from those describing the WCS calibration.
FITSCHAN2 = AST_COPY(FITSCHAN1, STATUS)

26 3 HOW TO...

* If necessary, make modifications to the cards in FITSCHAN2
* (e.g. you might need to change NAXIS1, NAXIS2, etc., to account for
* a change in image size). You probably only need to do this if your
* data system does not provide these facilities itself.

<details not shown - see below>
* Alternatively, if your data system handles the propagation of FITS
* header cards to the output dataset for you, then simply create an
* empty FitsChan to contain the output WCS information alone.
* FITSCHAN2 = AST_FITSCHAN(AST_NULL, AST_NULL, ’ ’, STATUS)
* Rewind the new FitsChan (if necessary) and attempt to write the
* output WCS information to it using the same encoding method as the

input dataset.
CALL AST_SET(FITSCHAN2, ’Card=1, Encoding=’ // ENCODE, STATUS)
IF (AST_WRITE(FITSCHAN2, WCSINF02, STATUS) .EQ. O) THEN

If this didn’t work (the WCS FrameSet has become too complex), then
use the native AST encoding instead.
CALL AST_SETC(FITSCHAN2, ’Encoding’, ’NATIVE’, STATUS);
JUNK = AST_WRITE(FITSCHAN2, WCSINF02, STATUS);
END IF

For details of how to modify the contents of the output FitsChan in other ways, such as by
adding, over-writing or deleting header cards, see §16.4, §16.9, §16.8 and §16.13.

Once you have assembled the output FITS cards, you may retrieve them from the FitsChan
that contains them as follows:

CHARACTER * (80) CARD

CALL AST_CLEAR(FITSCHAN2, ’Card’, STATUS)
5 CONTINUE
IF (AST_FINDFITS(FITSCHAN2, ’%f’, CARD, .TRUE., STATUS)) THEN
WRITE (*, °(A)’) CARD
GO TO 5
END IF

Here, we have simply written each card to the standard output unit, but you would obviously
replace this with a subroutine call to store the cards in your output dataset.

For data systems that do not use FITS header cards, a different approach may be needed,
possibly involving use of a Channel or XmlChan (§15) rather than a FitsChan. In the case of
the Starlink NDF data format, for example, all of the above may be replaced by a single call to
the routine NDF_PTWCS—see SUN/33. The whole process can probably be encapsulated in a
similar way for most other data systems, whether they use FITS header cards or not.

For an overview of how to propagate WCS information through data processing steps, see
§17.6. For more information about writing WCS information to FitsChans, see §16.5 and §17.7.
For information about the options for encoding WCS information in FITS header cards, see

3.16 ... Display a Graphical Coordinate Grid 27

FK5 coordinates; mean equinox J2000.0

Declination

3 2 1 0 23 22 21 20 19 18
Right ascension

Figure 9: An example of a displayed image with a coordinate grid plotted over it.

§16.1, §17.1, and the description of the Encoding attribute in Appendix C. For a complete
understanding of FitsChans and their use with FITS header cards, you should read §16 and §17.

3.16 ...Display a Graphical Coordinate Grid

A common requirement when displaying image data is to plot an associated coordinate grid
(e.g. Figure 9) over the displayed image. The use of AST in such circumstances is independent
of the underlying graphics system, so starting up the graphics system, setting up a coordinate
system, displaying the image, and closing down afterwards can all be done using the graphics
routines you would normally use.

However, displaying an image at a precise location can be a little fiddly with some graphics
systems, and obviously the grid drawn by AST will not be accurately registered with the image
unless this is done correctly. In the following template, we therefore illustrate both steps, basing
the image display on the PGPLOT graphics package.” Plotting a coordinate grid with AST
then becomes a relatively minor part of what is almost a complete graphics program.

TAn interface is provided with AST that allows it to use PGPLOT (SUN/15) for its graphics, although
interfaces to other graphics systems may also be written.

28 3 HOW TO...

Once again, we assume that a pointer, WCSINFO, to a suitable FrameSet associated with the
image has already been obtained (§3.4).

DOUBLE PRECISION BBOX(4)

INTEGER NX, NY, PGBEG, PLOT

REAL DATA(NX, NY), GBOX(4), HI, LO, SCALE, TR(6)
REAL X1, X2, XLEFT, XRIGHT, Y1, Y2, YBOTTOM, YTOP

Access the image data, which we assume will be stored in the real
2-dimensional array DATA with dimension sizes NX and NY. Also
derive limits for scaling it, which we assign to the variables HI
and LO.

<this stage depends on your data system, so is not shown>

* ¥ ¥ ¥

Open PGPLOT using the device given by environment variable
PGPLOT_DEV and check for success.
IF (PGBEG(O, *> °, 1, 1) .EQ. 1) THEN

* Clear the screen and ensure equal scales on both axes.
CALL PGPAGE
CALL PGWNAD(0.0, 1.0, 0.0, 1.0)

* (Obtain the extent of the plotting area (not strictly necessary for
* PGPLOT, but possibly for other graphics systems). From this, derive
* the display scale in graphics units per pixel so that the image
* will fit within the display area.
CALL PGQWIN(X1, X2, Y1, Y2)
SCALE = MIN((X2 - X1) / NX, (Y2 - Y1) / NY)
Calculate the extent of the area in graphics units that the image
will occupy, so as to centre it within the display area.
XLEFT = 0.5 *x (X1 + X2 - NX * SCALE)
XRIGHT = 0.5 * (X1 + X2 + NX * SCALE)
YBOTTOM = 0.5 * (Y1 + Y2 - NY * SCALE)
YTOP = 0.5 x (Y1 + Y2 + NY * SCALE)
Set up a PGPLOT coordinate transformation matrix and display the
image data as a grey scale map (these details are specific to
PGPLOT) .
TR(1) = XLEFT - 0.5 * SCALE
TR(2) = SCALE
TR(3) = 0.0
TR(4) = YBOTTOM - 0.5 * SCALE
TR(5) = 0.0
TR(6) = SCALE
CALL PGGRAY(DATA, NX, NY, 1, NX, 1, NY, HI, LO, TR)
* BEGINNING OF AST BIT
b3
* Store the locations of the bottom left and top right corners of the
* region used to display the image, in graphics coordinates.

GBOX(1) = XLEFT

3.17 ...Switch to Plot a Different Celestial Coordinate Grid 29

GBOX(2) = YBOTTOM
GBOX(3) = XRIGHT
GBOX(4) = YTOP

Similarly, store the locations of the image’s bottom left and top

right corners, in pixel coordinates -- with the first pixel centred
at (1,1).

BBOX(1) = 0.5D0

BBOX(2) = 0.5D0

BBOX(3) = NX + 0.5D0

BBOX(4) = NY + 0.5D0

Create a Plot, based on the FrameSet associated with the
image. This attaches the Plot to the graphics surface so that it
matches the displayed image. Specify that a complete set of grid

* ¥ ¥ ¥

lines should be drawn (rather than just coordinate axes).
PLOT = AST_PLOT(WCSINFO, GBOX, BBOX, ’Grid=1’, STATUS)

Optionally, we can now set other Plot attributes to control the
appearance of the grid. The values assigned here use the
colour/font indices defined by the underlying graphics system.

CALL AST_SET(PLOT, ’Colour(grid)=2, Font(textlab)=3’, STATUS)

* Use the Plot to draw the coordinate grid.
CALL AST_GRID(PLOT, STATUS)

<maybe some more AST graphics here>
Annul the Plot when finished (or use the AST_BEGIN/AST_END
technique shown earlier).

CALL AST_ANNUL(PLOT, STATUS)

END OF AST BIT

* Close down the graphics system.
CALL PGEND
END IF

Note that once you have set up a Plot which is aligned with a displayed image, you may also use
it to generate further graphical output of your own, specified in the image’s world coordinate
system (such as markers to represent astronomical objects, annotation, etc.). There is also a
range of Plot attributes which gives control over most aspects of the output’s appearance. For
details of the facilities available, see §21 and the description of the Plot class in Appendix D.

For details of how to build a graphics program which uses PGPLOT, see §3.3 and the description
of the ast_link command in Appendix E.

3.17 ...Switch to Plot a Different Celestial Coordinate Grid

Once you have set up a Plot to draw a coordinate grid (§3.16), it is a simple matter to change
things so that the grid represents a different celestial coordinate system. For example, after
creating the Plot with AST_PLOT, you could use:

30 3 HOW TO...

CALL AST_SET(PLOT, ’System=Galactic’, STATUS)

or:

CALL AST_SET(PLOT, ’System=FK5, Equinox=J2010’, STATUS)

and any axes and/or grid drawn subsequently would represent the new celestial coordinate
system you specified. Note, however, that this will only work if the original grid represented
celestial coordinates of some kind (see §3.8 for how to determine if this is the case®). If it did
not, you will get an error message.

For more information about the celestial coordinate systems available, see the descriptions of
the System, Equinox and Epoch attributes in Appendix C.

3.18 ...Give a User Control Over the Appearance of a Plot

The idea of using a Plot’s attributes to control the appearance of the graphical output it produces
(§3.16 and §3.17) can easily be extended to allow the user of a program complete control over
such matters.

For instance, if the file “plot.config” contains a series of plotting options in the form of Plot
attribute assignments (see below for an example), then we could create a Plot and implement
these assignments before producing the graphical output as follows:

CHARACTER LINE(120)
INTEGER BASE

Create a Plot and define the default appearance of the graphical
output it will produce.
PLOT = AST_PLOT(WCSINFO, GBOX, PBOX,
: ’Grid=1, Colour(grid)=2, Font(textlab)=3’,
STATUS)

* (Obtain the value of any Plot attributes we want to preserve.
BASE = AST_GETI(PLOT, ’Base’, STATUS)

* QOpen the plot configuration file, if it exists.
OPEN (1, FILE = ’plot.config’, STATUS = ’OLD’, ERR = 8)

Read each line of text and use it to set new Plot attribute
values. Close the file when done.
6 CONTINUE
READ (1, >(A)’, END = 7) LINE
CALL AST_SET(PLOT, LINE, STATUS)
GO TO 6
7 CLOSE (1)
8 CONTINUE

8Note that the methods applied to a FrameSet may be used equally well with a Plot.

3.18 ... Give a User Control Over the Appearance of a Plot 31

* Restore any attribute values we are preserving.
CALL AST_SETI(PLOT, ’Base’, BASE, STATUS)

* Produce the graphical output (e.g.).
CALL AST_GRID(PLOT, STATUS)

Notice that we take care that the Plot’s Base attribute is preserved so that the user cannot
change it. This is because graphical output will not be produced successfully if the base Frame
does not describe the plotting surface to which we attached the Plot when we created it.

The arrangement shown above allows the contents of the “plot.config” file to control most aspects
of the graphical output produced (including the coordinate system used; the colour, line style,
thickness and font used for each component; the positioning of axes and tick marks; the precision,
format and positioning of labels; etc.) via assignments of the form:

System=Galactic, Equinox = 2001
Border = 1, Colour(border) = 1
Colour(grid) = 2

DrawAxes = 1

Colour(axes) = 3

Digits = 8

Labelling = Interior

For a more sophisticated interface, you could obviously perform pre-processing on this input—
for example, to translate words like “red”, “green” and “blue” into colour indices, to permit
comments and blank lines, etc.

For a full list of the attributes that may be used to control the appearance of graphical output,
see the description of the Plot class in Appendix D. For a complete description of each individual
attribute (e.g. those above), see the attribute’s entry in Appendix C.

32

3 HOW TO...

33

4 An AST Object Primer

The AST library deals throughout with entities called Objects and a basic understanding of
how to handle these is needed before you can use the library effectively. If you are already
familiar with an object-oriented language, such as C++, few of the concepts should seem new
to you. Be aware, however, that AST is designed to be used wvia fairly conventional Fortran and
C interfaces, so some things have to be done a little differently.

If you are not already familiar with object-oriented programming, then don’t worry—we will not
emphasise this aspect more than is necessary and will not assume any background knowledge.
Instead, this section concentrates on presenting all the fundamental information you will need,
explaining how AST Objects behave and how to manipulate them from conventional Fortran
programs.

If you like to read documents from cover to cover, then you can consider this section as an
introduction to the programming techniques used in the rest of the document. Otherwise, you
may prefer to skim through it on a first reading and return to it later as reference material.

4.1 AST Objects

An AST Object is an entity which is used to store information and Objects come in various
kinds, called classes, according to the sort of information they hold. Throughout this section,
we will make use of a simple Object belonging to the “ZoomMap” class to illustrate many of
the basic concepts.

A ZoomMap is an Object that contains a recipe for converting coordinates between two hypo-
thetical coordinate systems. It does this by multiplying all the coordinate values by a constant
called the Zoom factor. A ZoomMap is a very simple Object which exists mainly for use in
examples. It allows us to illustrate the ways in which Objects are manipulated and to introduce
the concept of a Mapping—a recipe for converting coordinates—which is fundamental to the
way the AST library works.

4.2 Object Creation and Pointers

Let us first consider how to create a ZoomMap. This is done very simply as follows:

INCLUDE °’AST_PAR’
INTEGER STATUS, ZOOMMAP

STATUS = 0

ZOOMMAP = AST_ZOOMMAP(2, 5.0D0, ’> ’, STATUS)

The first step is to include the file AST_PAR which defines the interface to the AST library and,
amongst other things, declares AST_ZOOMMARP to be an integer function. We then declare
an integer variable ZOOMMARP to receive the result and an integer STATUS variable to hold
the error status, which we initialise to zero. Next, we invoke AST_ZOOMMAP to create the

34 4 AN AST OBJECT PRIMER

ZoomMap. The pattern is the same for all other classes of AST Object—you simply prefix
“AST_” to the class name to obtain the function that creates the Object.

These functions are called constructor functions, or simply constructors (you can find an individ-
ual description of all AST functions in Appendix B) and the arguments passed to the constructor
are used to initialise the new Object. In this case, we specify 2 as the number of coordinates
(i.e. we are going to work in a 2-dimensional space) and 5.0D0 as the Zoom factor to be applied.
Note that this is a Fortran double precision value. We will return to the final two arguments, a
blank string and the error status, shortly (§4.6 and §4.13).

The integer value returned by the constructor is termed an Object pointer or, in this case, a
ZoomMap pointer. This pointer is not an Object itself, but is a value used to refer to the
Object. You should be careful not to modify any Object pointer yourself, as this may render it
invalid. Instead, you perform all subsequent operations on the Object by passing this pointer
to other AST routines.

4.3 The Object Hierarchy

Now that we have created our first ZoomMap, let us examine how it relates to other kinds of
Object before investigating what we can do with it.

We have so far indicated that a ZoomMap is a kind of Object and have also mentioned that it is
a kind of Mapping as well. These statements can be represented very simply using the following
hierarchy:

Object

Mapping
ZoomMap

which is a way of stating that a ZoomMap is a special class of Mapping, while a Mapping, in
turn, is a special class of Object. This is exactly like saying that an Oak is a special form of
Tree, while a Tree, in turn, is a special form of Plant. This may seem almost trivial, but before
you turn to read something less dull, be assured that it is a very important idea to keep in mind
in what follows.

If we look at some of the other Objects used by the AST library, we can see how these are all
related in a similar way (don’t worry about what they do at this stage):

Object

Mapping

Frame
FrameSet
Plot

UnitMap
ZoomMap

Channel
FitsChan
XmlChan

Notice that there are several different types of Mapping available (i.e. there are classes of Object
indented beneath the “Mapping” heading) and, in addition, other types of Object which are not
Mappings—Channels for instance (which are at the same hierarchical level as Mappings).

4.4 Displaying Objects 35

The most specialised Object we have shown here is the Plot (which we will not discuss in detail
until §21). As you can see, a Plot is a FrameSet. .. and a Frame... and a Mapping. .. and, like
everything else, ultimately an Object.

What this means is that you can use a Plot not only for its own specialised behaviour, but also
whenever any of these other less-specialised classes of Object is called for. The general rule is
that an Object of a particular class may substitute for any of the classes appearing above it in
this hierarchy. The Object is then said to inherit the behaviour of these higher classes. We can
therefore use our ZoomMap whenever a ZoomMap, a Mapping or an Object is called for.

Sometimes, this can lead to some spectacular short-cuts by avoiding the need to break large
Objects down in order to access their components. With some practice and a little lateral
thinking you should soon be able to spot opportunities for this.

You can find the full class hierarchy, as this is called, for the AST library in Appendix A and
you may need to refer to it occasionally until you are familiar with the classes you need to use.

4.4 Displaying Objects

Let us now return to the ZoomMap that we created earlier (§4.2) and examine what it’s made
of. There is a routine for doing this, called AST_SHOW, which is provided mainly for looking
at Objects while you are debugging programs.

If you consult the description of AST_SHOW in Appendix B, you will find that it takes a
pointer to an Object as its argument (in addition to the usual STATUS argument). Although
we have only a ZoomMap pointer available, fortunately this is not a problem. If you refer to the
brief class hierarchy described above (§4.3), you will see that a ZoomMap is an Object, albeit a
specialised one, so it inherits the properties of all Objects and can be substituted wherever an
Object is required. We can therefore pass our ZoomMap pointer directly to AST_SHOW, as
follows:

CALL AST_SHOW(ZOOMMAP, STATUS)

The output from this will appear on the standard output stream and should look like the
following:

Begin ZoomMap

Nin = 2
IsA Mapping
Zoom = 5

End ZoomMap

Here, the “Begin” and “End” lines mark the beginning and end of the ZoomMap, while the
values 2 and 5 are simply the values we supplied to initialise it (§4.2). These have been given
simple names to make them easy to refer to.

The line in the middle which says “IsA Mapping” is a dividing line between the two values.
It indicates that the “Nin” value is a property shared by all Mappings, so the ZoomMap has
inherited this from its parent class (Mapping). The “Zoom” value, however, is specific to a
ZoomMap and isn’t shared by other kinds of Mappings.

36 4 AN AST OBJECT PRIMER

4.5 Getting Attribute Values

We saw above (§4.4) how to display the internal values of an Object, but what about accessing
these values from a program? Not all internal Object values are accessible in this way, but many
are. Those that are, are called attributes. A description of all the attributes used by the AST
library can be found in Appendix C.

Attributes come in several data types (character string, integer, boolean and floating point) and
there is a standard way of obtaining their values. As an example, consider obtaining the value
of the Nin attribute for the ZoomMap created earlier. This could be done as follows:

INTEGER NIN

NIN = AST_GETI(ZOOMMAP, °’Nin’, STATUS)

Here, the integer function AST_GETI is used to extract the attribute value by giving it the
ZoomMap pointer and the attribute name (attribute names are not case sensitive, but we have
used consistent capitalisation in this document in order to identify them). Remember to use the
AST_PAR include file to save having to declare AST_GETT as integer yourself.

If we had wanted the value of the Zoom attribute, we would probably have used AST_GETD
instead, this being a double precision version of the same function, for example:

DOUBLE PRECISION Z0OOM

ZOOM = AST_GETD(ZOOMMAP, ’Zoom’, STATUS)

However, we could equally well have read the Nin value as double precision, or the Zoom value
as an integer, or whatever we wanted.

The data type you want returned is specified simply by replacing the final character of the
AST_GETx function name with C (character), D (double precision), I (integer), L (logical) or
R (real). If possible, the value is converted to the type you want. If not, an error message
will result. In converting from integer to logical, zero is regarded as .FALSE. and non-zero as
.TRUE.. Note that all floating point values are stored internally as double precision. Boolean
values are stored as integers, but only take the values 1 and 0 (for true/false).

4.6 Setting Attribute Values

Some attribute values are read-only and cannot be altered after an Object has been created.
The Nin attribute of a ZoomMap (describing the number of coordinates) is like this. It is defined
when the ZoomMap is created, but cannot then be altered.

Other attributes, however, can be modified whenever you want. A ZoomMap’s Zoom attribute
is like this. If we wanted to change it, this could be done simply as follows:

4.7 Testing, Clearing and Defaulting Attributes 37

CALL AST_SETD(ZOOMMAP, ’Zoom’, 99.6D0, STATUS)

which sets the value to 99.6 (double precision). As when getting an attribute value (§4.5), you
have a choice of which data type you will use to supply the new value. For instance, you could
use an integer value, as in:

CALL AST_SETI(ZOOMMAP, ’Zoom’, 99, STATUS)

and the necessary data conversion would occur. You specify the data type you want to supply
simply by replacing the final character of the AST_SETx routine name with C (character),
D (double precision), I (integer), L (logical) or R (real). Setting a boolean attribute to any
non-zero integer causes it to take the value 1.

An alternative way of setting attribute values for Objects is to use the AST_SET routine (i.e.
with no final character specifying a data type). In this case, you supply the attribute values in
a character string. The big advantage of this method is that you can assign values to several
attributes at once, separating them with commas. This also reads more naturally in programs.
For example:

CALL AST_SET(ZOOMMAP, ’Zoom=99.6, Report=1’, STATUS)

would set values for both the Zoom attribute and the Report attribute (about which more
shortly—=64.8). You don’t really have to worry about data types with this method, as any
character representation will do (although you must use 0/1 instead of . TRUE./.FALSE., which
are not supported). Note, when using AST_SET, a literal comma may be included in an attribute
value by enclosed the value in quotation marks:

CALL AST_SET(SKYFRAME, ’SkyRef="12:13:32,-23:12:44"’, STATUS)

Finally, a very convenient way of setting attribute values is to do so at the same time as you
create an Object. Every Object constructor function has a penultimate character argument
which allows you to do this. Although you can simply leave this blank, it is an ideal opportunity
to initialise the Object to have just the attributes you want. For example, we might have created
our original ZoomMap with:

ZOOMMAP = AST_ZOOMMAP(2, 5.0D0, ’Report=1’, STATUS)

and it would then start life with its Report attribute set to 1.

4.7 Testing, Clearing and Defaulting Attributes

You can use the AST_GETx family of routines (§4.5) to get a value for any Object attribute at
any time, regardless of whether a value has previously been set for it. If no value has been set,
the AST library will generate a suitable default value.

Often, the default value of an attribute will not simply be trivial (zero or blank) but may
involve considerable processing to calculate. Wherever possible, defaults are designed to be
real-life, sensible values that convey information about the state of the Object. In particular,

38 4 AN AST OBJECT PRIMER

they may often be based on the values of other attributes, so their values may change in response
to changes in these other attributes. The ZoomMap class that we have studied so far is a little
too simple to show this behaviour, but we will meet it later on.

An attribute that returns a default value in this way is said to be un-set. Conversely, once an
explicit value has been assigned to an attribute, it becomes set and will always return precisely
that value, never a default.

The distinction between set and un-set attributes is important and affects the behaviour of
several key routines in the AST library. You can test if an attribute is set using the logical
function AST_TEST, as in:

IF (AST_TEST(ZOOMMAP, ’Report’, STATUS)) THEN
<the Report attribute is set>
END IF

(as usual, remember to include the AST_PAR file to declare the function as LOGICAL, or make
this declaration yourself).

Once an attribute is set, you can return it to its un-set state using AST_CLEAR. The effect is
as if it had never been set in the first place. For example:

CALL AST_CLEAR(ZOOMMAP, ’Report’, STATUS)

would ensure that the default value of the Report attribute is used subsequently.

4.8 Transforming Coordinates

We now have the necessary apparatus to start using our ZoomMap to show what it is really for.
Here, we will also encounter a routine that is a little more fussy about the type of pointer it will
accept.

The purpose of a ZoomMap is to multiply coordinates by a constant zoom factor. To witness
this in action, we will first set the Report attribute for our ZoomMap to a non-zero value:

CALL AST_SET(ZOOMMAP, ’Report=1’, STATUS)

This boolean (integer) attribute, which is present in all Mappings (and a ZoomMap is a Map-
ping), causes the automatic display of all coordinate values that the Mapping converts. It is not
a good idea to leave this feature turned on in a finished program, but it can save a lot of work
during debugging.

Our next step is to set up some coordinates for the ZoomMap to work on, using two arrays XIN
and YIN, and two arrays to receive the transformed coordinates, XOUT and YOUT. Note that
these arrays are double precision, as are all coordinate data processed by the AST library:

DOUBLE PRECISION XIN(10), YIN(C 10), XOUT(10), YOUT(10)
DATA XIN / ODO, 1DO, 2DO, 3DO, 4D0O, 5DO, 6DO, 7DO, 8DO, 9DO /
DATA YIN / ODO, 2DO, 4DO, 6DO, 8D0O, 10DO, 12DO, 14DO, 16DO, 18D0 /

4.8 'Transforming Coordinates 39

We will now use the routine AST_TRAN2 to transform the input coordinates. This is the most
commonly-used (2-dimensional) coordinate transformation routine. If you look at its description
in Appendix B, you will see that it requires a pointer to a Mapping, so we cannot supply just
any old Object pointer, as we could with the routines discussed previously. If we passed it a
pointer to an inappropriate Object, an error message would result.

Fortunately, a ZoomMap is a Mapping (Appendix A), so we can use it with AST_TRAN2 to
transform our coordinates, as follows:

CALL AST_TRAN2(ZOOMMAP, 10, XIN, YIN, .TRUE., XOUT, YOUT, STATUS)

Here, 10 is the number of points we want to transform and the fifth argument value of . TRUE.
indicates that we want to transform in the forward direction (from input to output).

Because our ZoomMap’s Report attribute is set to 1, this will cause the effects of the ZoomMap
on the coordinates to be displayed on the standard output stream:

(0, 0) -=> (0, 0)

(1, 2) -—> (5, 10)

(2, 4) --> (10, 20)
(3, 6) -—> (15, 30)
(4, 8) --> (20, 40)
(5, 10) --> (25, 50)
(6, 12) --> (30, 60)
(7, 14) --> (35, 70)
(8, 16) --> (40, 80)
(9, 18) --> (45, 90)

This shows the coordinate values of each point both before and after the ZoomMap is applied.
You can see that each coordinate value has been multiplied by the factor 5 determined by the
Zoom attribute value. The transformed coordinates are now stored in the XOUT and YOUT
arrays.

If we wanted to transform in the opposite direction, we need simply change the fifth argument
of AST_TRAN2 from .TRUE. to .FALSE.. We can also feed the output coordinates from the
above back into the routine:

CALL AST_TRAN2(ZOOMMAP, 10, XOUT, YOUT, .FALSE., XIN, YIN, STATUS)
The output would then look like:

(0, 0) --> (0, 0)

(5, 10) -—> (1, 2)

(10, 20) --> (2, 4)
(15, 30) --> (3, 6)
(20, 40) --> (4, 8)
(25, 50) --> (5, 10)
(30, 60) --> (6, 12)
(85, 70) --> (7, 14)
(40, 80) --> (8, 16)
(45, 90) --> (9, 18)

This is termed the inverse transformation (we have converted from output to input) and you
can see that the original coordinates have been recovered by dividing by the Zoom factor.

40 4 AN AST OBJECT PRIMER

4.9 Managing Object Pointers

So far, we have looked at creating Objects and using them in various simple ways but have not
yet considered how to get rid of them again.

Every Object consumes various computer resources (principally memory) and should be disposed
of when it is no longer required, so as to free up these resources. One way of doing this (not
necessarily the best—§4.10) is to annul each Object pointer once you have finished with it, using
AST_ANNUL. For example:

CALL AST_ANNUL(ZOOMMAP, STATUS)

This indicates that you have finished with the pointer and sets it to the null value AST__NULL
(as defined in the AST_PAR include file), so that any attempt to use it again will generate an
error message.

In general, this process may not delete the Object, because there may still be other pointers
associated with it. However, each Object maintains a count of the number of pointers associated
with it and will be deleted if you annul the final pointer. Using AST_ANNUL consistently will
therefore ensure that all Objects are disposed of at the correct time. You can determine how
many pointers are associated with an Object by examining its (read-only) RefCount attribute.

4.10 AST Pointer Contexts—Begin and End
The use of AST_ANNUL (§4.9) is not completely foolproof, however. Consider the following:

CALL AST_SHOW(AST_ZOOMMAP(2, 5.0D0, ’ ’, STATUS), STATUS)

This creates a ZoomMap and displays it on standard output (§4.4). Using function invocations
as arguments to other routines in this way is very convenient because it avoids the need for
intermediate pointer variables. However, the pointer generated by AST_ZOOMMAP is still
active, and since we have not stored its value, we cannot use AST_ANNUL to annul it. The
ZoomMap will therefore stay around until the end of the program.

A simple way to avoid this problem is to enclose all use of AST routines between calls to
AST_BEGIN and AST_END, for example:

CALL AST_BEGIN(STATUS)
CALL AST_SHOW(AST_ZOOMMAP(2, 5.0D0, ’ ’, STATUS), STATUS)
CALL AST_END(STATUS)

When the AST_END call executes, every Object pointer created since the previous AST_BEGIN
call is automatically annulled and any Objects left without pointers are deleted. This provides
a simple solution to managing Objects and their pointers, and allows you to create Objects very
freely without needing to keep detailed track of each one. Because this is so convenient, we
implicitly assume that AST_BEGIN and AST_END are used in most of the examples given in
this document. Pointer management is not generally shown explicitly unless it is particularly
relevant to the point being illustrated.

If necessary, calls to AST_BEGIN and AST_END may be nested, like IF... ENDIF blocks in
Fortran, to define a series of AST pointer contexts. Each call to AST_END will then annul only
those Object pointers created since the matching call to AST_BEGIN.

4.11 Exporting, Importing and Exempting AST Pointers 41

4.11 Exporting, Importing and Exempting AST Pointers

The AST_EXPORT routine allows you to export particular pointers from one AST context
(§4.10) to the next outer one, as follows:

CALL AST_EXPORT(ZOOMMAP, STATUS)

This would identify the pointer stored in ZOOMMAP as being required after the end of the

current AST context. It causes any pointers nominated in this way to survive the next call to
AST_END (but only one such call) unscathed, so that they are available to the next outer con-

text. This facility is not needed often, but is invaluable when the purpose of your AST_BEGIN... AST_END
block is basically to generate an Object pointer. Without this, there is no way of getting that

pointer out.

The AST_IMPORT routine can be used in a similar manner to import a pointer into the current
context, so that it is deleted when the current context is closed using AST_END.

Sometimes, you may also want to exempt a pointer from all the effects of AST contexts. You
should not need to do this often, but it will prove essential if you ever need to write a library
of routines that stores AST pointers as part of its own internal data. Without some form of
exemption, the caller of your routines could cause the pointers you have stored to be annulled—
thus corrupting your internal data—simply by using AST_END. To avoid this, you should use
AST_EXEMPT on each pointer that you store, for example:

CALL AST_EXEMPT(ZOOMMAP, STATUS)

This will prevent the pointer being affected by any subsequent use of AST_END. Of course,
it then becomes your responsibility to annul this pointer (using AST_ANNUL) when it is no
longer required.

4.12 Copying Objects

The AST library makes extensive use of pointers, not only for accessing Objects directly, but also
as a means of storing Objects inside other Objects (a number of classes of Object are designed
to hold collections of other Objects). Rather than copy an Object in its entirety, a pointer to
the interior Object is simply stored in the enclosing Object.

This means that Objects may frequently not be completely independent of each other because,
for instance, they both contain pointers to the same sub-Object. In this situation, changing one
Object (say assigning an attribute value) may affect the other one via the common Object.

It is difficult to describe all cases where this may happen, so you should always be alert to the
possibility. Fortunately, there is a simple solution. If you require two Objects to be independent,
then simply use AST_COPY to make a copy of one, e.g:

INTEGER ZOOMMAP1, ZOOMMAP2

ZOOMMAP2 = AST_COPY(ZOOMMAP1, STATUS)

42 4 AN AST OBJECT PRIMER

This process will create a true copy of any Object and return a pointer to the copy. This copy
will not contain any pointers to any component of the original Object (everything is duplicated),
so you can then modify it safely, without fear of affecting either the original or any other Object.

4.13 Error Detection

If an error occurs in an AST routine (for example, if you supply an invalid argument, such as
a pointer to the wrong class of Object), an error message will be written to the standard error
stream and the function will immediately return.

To indicate that an error has occurred, each AST routine that can potentially fail has a final
integer error status argument called STATUS. This is both an input and an output argument.
Normally, you should declare a single error status variable and pass it as the STATUS argument
to every AST routine you invoke. This variable must initially be cleared (i.e set to zero” to
indicate no error). If an error occurs, the STATUS argument is returned set to a different error
value, which allows you to detect the error, as follows:

STATUS = 0

ZOOMMAP = AST_ZOOMMAP(2, 5.0D0, ’Title=My ZoomMap’, STATUS)
IF (STATUS .NE. O) THEN

<an error has occurred>
END IF

In this example, an error would be detected because we have attempted to set a value for the
Title attribute of a ZoomMap and a ZoomMap does not have such an attribute.

A consequence of the error status variable STATUS being set to an error value is that almost all
AST routines will subsequently cease to function and will instead simply return without action.
This means that you do not need to check for errors very frequently. Instead, you can usually
simply invoke a succession of AST routines. If an error occurs in any of them, the following ones
will do nothing and you can check for the error at the end, for example:

STATUS = 0

CALL AST_ROUTINEA(... , STATUS)
CALL AST_ROUTINEB(... , STATUS)
CALL AST_ROUTINEC(... , STATUS)

IF (STATUS .NE. 0) THEN
<an error has occurred>
END IF

9We will assume throughout that the “OK” value is zero, as it currently is. However, a different value could,
in principle, be used if the environment in which AST is running requires it. To allow for this possibility, you
might prefer to use a parameter constant to represent the value zero when testing for errors.

4.13 Error Detection 43

There are, however, a few routines which do not adhere to this general rule and which will at-
tempt to execute if their STATUS argument is initially set. These routines, such as AST_ANNUL,
are concerned with cleaning up and recovering resources. For example, in the following:

STATUS = 0

ZOOMMAP = AST_ZOOMMAP(2, 5.0D0O, ’ ’, STATUS)
CALL AST_ROUTINEX(... , STATUS)

CALL AST_ROUTINEY(... , STATUS)

CALL AST_ROUTINEZ(... , STATUS)

CALL AST_ANNUL(ZOOMMAP, STATUS)
IF (STATUS .NE. O) THEN

<an error has occurred>
END IF

AST_ANNUL will execute normally in order to recover the resources associated with the
ZoomMap that was created earlier, regardless of whether an error has occurred in any of the
intermediate routines. Routines which behave in this way are noted in the relevant descriptions
in Appendix B.

If a serious error occurs, you will probably want to abort your program, but sometimes you may
want to recover and carry on. This is simply done by resetting your error status variable to
zero, whereupon the AST routines you pass it to will execute normally again.

44

4 AN AST OBJECT PRIMER

45

5 Inter-Relating Coordinate Systems (Mappings)

In §4 we used the ZoomMap as an example of a Mapping. We saw how it could be used to
transform coordinates from its input to its output and back again (§4.8). We also saw how its
behaviour could be controlled by setting various attributes, such as the Zoom factor and the
Report attribute that made it display coordinate values as it transformed them.

In this section, we will look at Mappings a bit more thoroughly and explore the behaviour which
is common to all the Mappings provided by AST. This is good background for what follows,
because many of the Objects we discuss later will also turn out to be Mappings in various
disguises.

5.1 The Mapping Class

Before we start, it is worth taking a quick look at the Mapping class as a whole and some of the
sub-classes it contains:

Mapping
CmpMap
DssMap
GrismMap
IntraMap
LutMap
MathMap
MatrixMap
PermMap
PolyMap
SlaMap
SpecMap
TimeMap
UnitMap
WcsMap
ZoomMap

Frame
<various types of Frame>

The Frame sub-class has been separated out here because it is covered in detail in §7. We start
by looking at the parent class, Mapping.

AST does not provide a function to create a basic Mapping (i.e. the AST_MAPPING constructor
does not exist). This is because the Mapping class itself is “virtual” and basic Mappings are
of no use in themselves. The Mapping class serves simply to contain the various specialised
Mappings that exist. However, it provides more than just a convenient heading for them because
it bestows all classes of Mapping with common properties (e.g. attributes) and behaviour. By
examining the Mapping class, we are therefore examining the things that all other Mappings
have in common.

46 5 INTER-RELATING COORDINATE SYSTEMS (MAPPINGS)

5.2 The Mapping Model

The concept of a Mapping was illustrated in Figure 1. It is a black box which you can supply
with a set of coordinate values in return for a set of transformed coordinates. The two sets are
termed input and output coordinates. You can also go back the other way and transform output
coordinates back into input coordinates, as we saw in §4.8.

5.3 Input and Output Coordinate Numbers

In general, the number of coordinates you feed into a Mapping to represent a single point need
not be the same as the number that comes out. Often these numbers will be the same, and
often they will both equal 2 (because 2-dimensional coordinate systems are common), but this
needn’t necessarily be the case.

The number of coordinates required to specify an input point is represented by the integer
attribute Nin and the number required to specify an output point is represented by Nout. These
are read-only attributes common to all Mappings. Generally, their values are fixed when a
Mapping is created.

In §4.2, we saw how the Nin attribute for a ZoomMap was initialised by the call to the constructor
function AST_ZOOMMAP which created it. In this case, the Nout attribute was not needed
and it implicitly took the same value as Nout, but we could have enquired about its value had
we wanted, as follows:

INCLUDE ’AST_PAR’
INTEGER NOUT, STATUS, ZOOMMAP

STATUS = 0

NOUT = AST_GETI(ZOOMMAP, ’Nout’, STATUS)

5.4 Forward and Inverse Transformations

We stated earlier that a Mapping may be used to transform coordinates either from input to
output, or vice versa. These are termed its forward and inverse transformations.

This statement was not quite accurate, however, because in general Mappings are only poten-
tially capable of working in both directions. In practice, coordinate transformation may only
be feasible in one direction or the other because some functions are not easily inverted (they
may be multi-valued, for instance). Allowance must be made for this, so each Mapping has two
read-only boolean (integer) attributes, TranForward and TranInverse, which indicate whether
each transformation is available.

A transformation is available if the corresponding attribute is non-zero, otherwise it is not.'% If
you enquire about the value of these attributes, a value of 0 or 1 is returned. Attempting to use
a Mapping to apply a transformation which is not available will result in an error.

10Most of the Mappings provided by the AST library work in both directions, although the LutMap can behave
otherwise.

5.5 Inverting Mappings 47

5.5 Inverting Mappings

An important attribute, common to all Mappings, is the Invert flag. This is a boolean (integer)
attribute that can be assigned a new value at any time. If it is non-zero, it has the effect of
interchanging the Mapping’s input and output coordinates and the Mapping is then said to be
inverted. By default, the Invert attribute is zero.

There is no magic in this. There is no fancy arithmetic involved in inverting mathematical
functions, for instance. The Invert flag is simply a switch that interchanges a Mapping’s input
and output ports. If it is non-zero, the Mapping’s Nin and Nout attributes are swapped, its
TranForward and TranInverse attributes are swapped, and when you ask for what was once the
forward transformation you get the inverse transformation instead (and wvice versa). When you
return the Invert attribute to zero, or clear it, the Mapping returns to its original behaviour.

Often, the actual value of the Invert attribute is unimportant and you simply wish to invert its
boolean sense, so that what was the Mapping’s input becomes its output and wice versa. This
is most easily accomplished using AST_INVERT, as follows:

INTEGER MAPPING

CALL AST_INVERT(MAPPING, STATUS)

If the Mapping you have happens to be the wrong way around, AST_INVERT allows you to
correct the problem.

5.6 Finding the Rate of Change of a Mapping Output

The AST_RATE function can be used to find the rate of change of any Mapping output with
respect to any Mapping input, at a given input position. The method used produces good accu-
racy (typically a relative error of 10E-10 or less) but may require the Mapping to be evaluated
100 or more times. An estimate of the second derivative is also produced by this function.

5.7 Reporting Coordinate Transformations

We have already seen (§4.8) how the boolean (integer) Report attribute of a Mapping works. If it
is non-zero, the operation of transforming a set of coordinates will result in a report being written
to standard output. This will display the coordinate values before and after transformation. It
can save considerable time during program development by eliminating the need to add loops
and output statements to your program.

In a finished program, however, you should be careful that the Report attribute is not set to a
non-zero value unless you want to see the output (there may often be rather a lot of this!). To
help prevent unwanted output being produced by accident, the Report attribute is unusual in
that its value is not preserved when a Mapping is copied using AST_COPY (§4.12). Instead, it
reverts to its default of zero (i.e. un-set) in the copy. It also reverts to zero when a Mapping is
written out, e.g. to a file using a Channel (§15).

48 5 INTER-RELATING COORDINATE SYSTEMS (MAPPINGS)

5.8 Handling Missing (Bad) Coordinate Values

Even when coordinates can, in principle, be transformed in either direction by a Mapping, there
may still be instances where specific coordinate values cannot be handled. For example, the
Mapping may be mathematically intractable (e.g. singular) in certain places, or it may map a
subset of one space on to another, so that some points in one space are not represented in the
other. Sky projections often show this behaviour, since it is quite common to project only half
of the celestial sphere on to two dimensions, omitting points on the opposite side of the sky.
There are many other examples.

To indicate when coordinates cannot be transformed, for whatever reason, AST substitutes a
special output coordinate value given by the parameter constant AST__BAD (as defined in
the AST_PAR include file). Before making use of coordinates generated by any of the AST
transformation routines, therefore, you may need to check for the presence of this value.

Because coordinates with the value AST__BAD can be generated in this way, all other AST
routines are also capable of recognising this value and handling it appropriately. The coordi-
nate transformation routines do this by propagating any missing input coordinate information
through to their output. This means that if you supply coordinates with the value AST__BAD,
the returned coordinates are also likely to contain this value. Here, for example, is what happens
if you use a ZoomMap (with Zoom factor 5) to transform such a set of coordinates:

(0, 0) -—> (0, 0)

(<bad>, 2) --> (<bad>, 10)

(2, 4) --> (10, 20)

(3, 6) -—> (15, 30)

(4, <bad>) --> (20, <bad>)

(5, 10) -—> (25, 50)

(<bad>, <bad>) --> (<bad>, <bad>)
(7, 14) --> (35, 70)

(8, 16) --> (40, 80)

(9, 18) —--> (45, 90)

The AST__BAD value is represented by the string “<bad>”. This is a case of “garbage in,
garbage out” but at least it’s consistent garbage that you can recognise!

Note how the presence of the AST__BAD value in one input dimension does not necessarily result
in the loss of information for all output dimensions. Sometimes, such loss will be unavoidable,
but in general an attempt is made to preserve information as far as possible. The exact behaviour
will depend on the Mapping involved.

5.9 Example—the UnitMap

The UnitMap is the simplest of Mappings. It is a null Mapping. Its purpose is simply to copy
coordinate values, unaltered, from its input to its output and vice versa.

A UnitMap has no additional attributes beyond those of a basic Mapping. Its Nin and Nout
attributes are always equal and are specified by the first argument supplied to its constructor.
For example:

5.10 Example—the PermMap 49

INTEGER UNITMAP

UNITMAP = AST_UNITMAP(2, ’ ’, STATUS)

will create a UnitMap that copies 2-dimensional coordinates. Inverting a UnitMap has no effect
beyond changing the value of its Invert attribute.

The main use of a UnitMap is to allow a Mapping to be supplied when one is required (as an
argument to a routine, for example) but you wish it to leave coordinate values unchanged.

5.10 Example—the PermMap

The PermMap is a rather more complicated Mapping than we have met previously. Its purpose
is to change the order, or number, of coordinates. It is also able to substitute fixed values for
coordinates.

To illustrate its action, suppose our input coordinates are denoted by (z1,x2,z3,24) in a 4-
dimensional space and suppose our output coordinates are to be (x4, 1,2, x3). Our PermMap,
therefore, should rotate the coordinate values by one position.

To create such a PermMap, we first set up two integer arrays. One of these, OUTPERM, controls
the selection of input coordinates for use in the output and the other, INPERM, controls selection
of output coordinates for use in the input:

INTEGER OUTPERM(4), INPERM(4)
DATA OUTPERM / 4, 1, 2, 3 /
DATA INPERM / 2, 3, 4, 1 /

Note that the numbers we store in these arrays are the indices of the coordinates that we want
to select. We have chosen these so that the forward and inverse transformations will perform
complementary permutations on the coordinates.

The PermMap is then created by passing these arrays to its constructor, as follows:

INTEGER PERMMAP
DOUBLE PRECISION DUMMY(1)

PERMMAP = AST_PERMMAP(4, INPERM, 4, OUTPERM, DUMMY, ’ ’, STATUS)

(the fifth argument is not being used, so a dummy array has been supplied). Note that we specify
the number of input and output coordinates separately, but set both to 4 in this example. The
resulting PermMap would have the following effect when used to transform coordinates:

Forward:
(1, 2: 39 4) -—> (4: 13 2, 3)
(2, 4, 6, 8) ——> (8, 2, 4, 6)

50 5 INTER-RELATING COORDINATE SYSTEMS (MAPPINGS)

(3, 6, 9, 12) -—> (12, 3, 6, 9)
(4, 8, 12, 16) --> (16, 4, 8, 12)
(5, 10, 15, 20) --> (20, 5, 10, 15)

Inverse:
4, 1, 2, 3) ——> (1, 2, 3, 4)
(8, 2, 4, 6) ——> (2, 4, 6, 8)
(12, 3, 6, 9) --> (3, 6, 9, 12)
(16, 4, 8, 12) -—> (4, 8, 12, 16)
(20, 5, 10, 15) -—> (5, 10, 15, 20)

If the number of input and output coordinates are unequal so, also, will be the size of the OUT-
PERM and INPERM arrays. This means, however, that we cannot fill them with coordinate
indices so that they perform complementary permutations, because one transformation will lose
information (discard a coordinate) that the other cannot recover. To give an example, consider
the following:

INTEGER OUTPERM(3), INPERM(4)
DOUBLE PRECISION CONST(1)

DATA OUTPERM / 4, 3, 2 /

DATA INPERM / -1, 3, 2, 1/

DATA CONST / 99.004D0 /

In this case, the forward transformation will change (z1,x2,23,24) into (x4, 23, z2) and will
discard z1. The inverse transformation restores the original coordinate order, but has no value
to assign to the first coordinate. In this case, the number entered in the INPERM array is —1.

This negative value indicates that the coordinate value should be obtained by addressing the
CONST array using an index of 1 (the absolute value). This array, ignored in the previous
example, may then be used to supply a value for the missing coordinate.

The constructor function:
PERMMAP = AST_PERMMAP(4, INPERM, 3, OUTPERM, CONST, ’> ’, STATUS)
will then create a PermMap with the following effect when used to transform coordinates:

Forward:
(1, 2, 3, 4) -——> (4, 3, 2)
(2, 4, 6, 8) -—> (8, 6, 4)
3, 6, 9, 12) -——> (12, 9, 6)
(4, 8, 12, 16) --> (16, 12, 8)
(5, 10, 15, 20) --> (20, 15, 10)

Inverse:
(4, 3, 2) -—> (99.004, 2, 3, 4)
(8, 6, 4) --> (99.004, 4, 6, 8)
(12, 9, 6) --> (99.004, 6, 9, 12)
(16, 12, 8) --> (99.004, 8, 12, 16)
(20, 15, 10) --> (99.004, 10, 15, 20)

5.10 Example—the PermMap 51

The CONST array may contain more than one value if necessary and may be addressed by both
the INPERM and OUTPERM arrays using coordinate indices —1, —2, —3, etc. to refer to the
first, second, third, etc. elements.

If there is no suitable replacement value that can be supplied via the CONST array, a value
of zero may be entered into the OUTPERM and/or INPERM arrays. This causes the value
AST__BAD to be used for the affected coordinate (as defined in the AST_PAR include file),
thus indicating a missing coordinate value (§5.8).

The principle use for a PermMap lies in matching a coordinate system to a data array where
there is a choice of storage order for the data. PermMaps are also useful for discarding unwanted
coordinates so as to reduce the number of dimensions, such as when selecting a “slice” from a
multi-dimensional array.

52

5 INTER-RELATING COORDINATE SYSTEMS (MAPPINGS)

53

6 Compound Mappings (CmpMaps)

We now turn to a rather special form of Mapping, the CmpMap. The Mappings we have
considered so far have been atomic, in the sense that they perform pre-defined elementary
transformations. A CmpMap, however, is a compound Mapping. In essence, it is a framework
for containing other Mappings and its purpose is to allow those Mappings to work together in
various combinations while appearing as a single Object. A CmpMap’s behaviour is therefore
not pre-defined, but is determined by the other Mappings it contains.

6.1 Combining Mappings in Series

Consider a simple example based on two 2-dimensional coordinate systems. Suppose that to
convert from one to the other we must swap the coordinate order and multiply both coordinates
by 5, so that the coordinates (x1,x2) transform into (5z2,5z1). This can be done in two stages:

1. Apply a PermMap (§5.10) to swap the coordinate order.

2. Apply a ZoomMap (§4.8) to multiply both coordinate values by the constant 5.

The PermMap and ZoomMap are then said to operate in series, because they are applied
sequentially (c.f. Figure 2). We can create a CmpMap that applies these Mappings in series as
follows:

INCLUDE ’AST_PAR’

INTEGER CMPMAP, PERMMAP, STATUS, ZOOMMAP
INTEGER INPERM(2), OUTPERM(2), CONST(1)
DATA INPERM / 1, 2 /

DATA OUTPERM / 1, 2 /

STATUS = 0

* Create the individual Mappings.
PERMMAP AST_PERMMAP(2, INPERM, 2, OUTPERM, CONST, ’> °’, STATUS)
ZOOMMAP = AST_ZOOMMAP(2, 5.0D0, ’ ’, STATUS)

* Combine them in series.
CMPMAP = AST_CMPMAP(PERMMAP, ZOOMMAP, .TRUE., ’ ’, STATUS)

* Annul the individual Mapping pointers.
CALL AST_ANNUL(PERMMAP, STATUS)
CALL AST_ANNUL(ZOOMMAP, STATUS)

Here, the third argument (.TRUE.) of the constructor function AST_CMPMAP indicates “in
series”.

When used to transform coordinates in the forward direction, the resulting CmpMap will apply
the first component Mapping (the PermMap) and then the second one (the ZoomMap). When
transforming in the inverse direction, it will apply the second one (in the inverse direction) and

54 6 COMPOUND MAPPINGS (CMPMAPS)

then the first one (also in the inverse direction). In general, although not in this particular
example, the order in which the two component Mappings are supplied is significant. Clearly,
also, the Nout attribute (number of output coordinates) for the first Mapping must equal the
Nin attribute (number of input coordinates) for the second one.

6.2 Combining Mappings in Parallel

Connecting two Mappings in series (§6.1) is not the only way of combining them. The alternative,
in parallel, involves applying the two Mappings at once but on different subsets of the coordinate
values.

Consider, for example, a set of 3-dimensional coordinates and suppose we wish to transform
them by swapping the first two coordinate values and multiplying the final one by 5, so that
(21, 2, x3) transforms into (x2,z1,5x3). Again, we can perform each of these steps individually
using exactly the same PermMap and ZoomMap as used earlier (§6.1). In this case, however,
these individual Mappings are applied in parallel (c.f. Figure 3).

Creating a CmpMap for this purpose is also very simple:
CMPMAP = AST_CMPMAP(PERMMAP, ZOOMMAP, .FALSE., ’ ’, STATUS)

The only difference is that the third argument of AST_CMPMAP is now .FALSE., meaning “in
parallel”.

As before, the order in which the two component Mappings are supplied is significant. The first
one acts on the lower-numbered input coordinate values (however many it needs) and produces
the lower-numbered output coordinates, while the second Mapping acts on the higher-numbered
input coordinates (however many remain) and generates the remaining higher-numbered output
coordinates. When the CmpMap transforms coordinates in the inverse direction, both compo-
nent Mappings are applied to the same coordinates, but in the inverse direction.

Note that the Nin and Nout attributes of the component Mappings (i.e. the numbers of input
and output coordinates) will sum to give the Nin and Nout attributes of the overall CmpMap.

6.3 The Component Mappings

A CmpMap does not store copies of its component Mappings, but simply holds pointers to them.
In th example above (§6.1), we were free to annul the individual Mapping pointers after creating
the CmpMap because the pointers held internally by the CmpMap increased the reference count
(RefCount attribute) of each component Mapping by one. The individual components are
therefore not deleted by AST_ANNUL, but retained until the CmpMap itself is deleted and
annuls the pointers it holds. Consistent use of AST_ANNUL (§4.9) and/or pointer contexts
(§4.10) will therefore ensure that all Objects are deleted at the appropriate time.

Note that access to a CmpMap’s component Mappings is not generally available unless pointers
to them are retained when the CmpMap is created. If such pointers are retained, then subsequent
modifications to the individual components can be used to indirectly modify the behaviour of
the overall CmpMap.

There is an important exception to this, however, because a CmpMap retains a copy of the initial
Invert flag settings of each of its components and uses these in order to ignore any subsequent

6.4 Creating More Complex Mappings 55

external changes. This means that you may invert either component Mapping before inserting
it into a CmpMap and need not worry if you un-invert it again later. The CmpMap’s behaviour
will not be affected by the later action.

6.4 Creating More Complex Mappings

Because a CmpMap is itself a Mapping, any existing CmpMap can substitute (§4.3) as a com-
ponent Mapping when constructing a new CmpMap using AST_CMPMAP. This has the effect
of nesting one CmpMap inside another and opens up many new possibilities. For example,
combining three Mappings in series can be accomplished as follows:

INTEGER MAP1, MAP2, MAP3

CMPMAP = AST_CMPMAP(MAP1, AST_CMPMAP(MAP2, MAP3, .TRUE., ’ ’, STATUS),
: .TRUE., ’ ’, STATUS)

The way in which the individual component Mappings are grouped within the nested CmpMaps
is not usually important.

A similar technique can be used to combine multiple Mappings in parallel and, of course, mixed
series and parallel combinations are also possible (Figure 4). There is no built-in limit to how
many CmpMaps may be nested in this way, so this mechanism provides an indefinitely extensible
method of building complex Mappings out of the elemental building blocks provided by AST.

In practice, you might not need to construct such complex CmpMaps yourself very frequently,
but they will often be returned by AST routines. Nested CmpMaps underlie the library’s entire
ability to represent a wide range of different coordinate transformations.

6.5 Example—Transforming Between Two Calibrated Images

Consider, as a practical example of CmpMaps, two images of the sky. Suppose that for each im-
age we have a Mapping which converts from pixel coordinates to a standard celestial coordinate
system, say FK5 (J2000.0). If we wish to inter-compare these images, we can do so by using
this celestial coordinate system to align them. That is, we first convert from pixel coordinates
in the first image into FK5 coordinates and we then convert from FK5 coordinates into pixel
coordinates in the second image.

If MAPA and MAPB are pointers to our two original Mappings, we could form a CmpMap which
transforms directly between the pixel coordinates of the first and second images by combining
these Mappings, as follows:

INTEGER ALIGNMAP, MAPA, MAPB

CALL AST_INVERT(MAPB, STATUS)
ALIGNMAP = AST_CMPMAP(MAPA, MAPB, .TRUE., °’ °’, STATUS)
CALL AST_INVERT(MAPB, STATUS)

56 6 COMPOUND MAPPINGS (CMPMAPS)

Here, we have used AST_INVERT (§5.5) to invert MAPB before inserting it into the CmpMap
because, as supplied, it converted in the wrong direction. Afterwards, we invert it again to
return it to its original state. The CmpMap, however, will ignore this subsequent change (§6.3).

The forward transformation of the resulting CmpMap will now transform from pixel coordinates
in the first image to pixel coordinates in the second image, while its inverse transformation will
convert in the opposite direction.

6.6 Over-Complex Compound Mappings

While a CmpMap provides a very flexible way of constructing arbitrarily complex Mappings
(§6.4), it unfortunately also provides an opportunity for representing simple Mappings in com-
plex ways. Sometimes, unnecessary complexity can be difficult to avoid but can obscure impor-
tant simplifications.

Consider the example above (§6.5), in which we inter-related two images of the sky wvia a
CmpMap. If the two images turned out to be simply offset from each other by a shift along each
pixel axis, then this approach would align them correctly, but it would be inefficient. This is be-
cause it would introduce unnecessary and expensive transformations to and from an intermediate
celestial coordinate system, whereas a simple shift of pixel origin would suffice.

Recognising that a simpler and more efficient solution exists obviously requires a little more
than simply joining two Mappings end-to-end. We must also determine whether the resulting
CmpMap is more complex than it needs to be, i.e. contains redundant information. If it is, we
then need a way to simplify it.

The problem is not always just one of efficiency, however. Sometimes we may also need to
know something about the actual form a Mapping takes—i.e. the nature of the operations it
performs. Unnecessary complexity can obscure this, but such complexity can easily accumulate
during normal data processing.

For example, a Mapping that transforms pixel coordinates into positions on the sky might be
repeatedly modified as changes are made to the shape and size of the image. Typically, on each
occasion, another Mapping will be concatenated to reflect what has happened to the image. This
could soon make it difficult to discern the overall nature of the transformation from the complex
CmpMap that accumulates. If only shifts of origin were involved on each occasion, however,
they could be combined into a single shift which could be represented much more simply.

Suppose we now wanted to represent our image’s celestial coordinate calibration using FITS
conventions (§17). This requires AST to determine whether the Mapping which relates pixel
coordinate to sky positions conforms to the FITS model (for example, whether it is equivalent
to applying a single set of shifts and scale factors followed by a map projection). Clearly, there
is an important use here for some means of simplifying the internal structure of a CmpMap.

6.7 Simplifying Compound Mappings

The ability to simplify compound Mappings is provided by the AST_SIMPLIFY function.
This function encapsulates a number of heuristics for converting Mappings, or combinations
of Mappings within a CmpMap, into simpler, equivalent ones. When applied to a CmpMap,

6.7 Simplifying Compound Mappings 57

PermMap PermMap

ZoomMaps

Figure 10: An over-complex compound Mapping, consisting of PermMaps, ZoomMaps and a
UnitMap, which can be simplified to become a single UnitMap. The enclosing nested CmpMaps
have been omitted for clarity.

AST_SIMPLIFY tries to reduce the number of individual Mappings within it by merging neigh-
bouring component Mappings together. It will do this with both series and parallel combinations
of Mappings, or both, and will handle CmpMaps nested to any depth (§6.4).

To illustrate how AST_SIMPLIFY works, consider the combination of Mappings shown in Fig-
ure 10. If this were contained in a CmpMap, it could be simplified as follows:

INTEGER SIMPLER

SIMPLER = AST_SIMPLIFY(CMPMAP, STATUS);

In this case, the result would be a simple 3-dimensional UnitMap (the identity Mapping). To
reach this conclusion, AST_SIMPLIFY will have made a number of deductions, roughly as
follows:

1. The two 2-dimensional ZoomMaps in series are equivalent to a single ZoomMap with a
combined Zoom factor of unity. This, in turn, is equivalent to a 2-dimensional UnitMap.

2. This UnitMap in parallel with the other 1-dimensional UnitMap is equivalent to a single
3-dimensional UnitMap. This UnitMap, sandwiched between any other pair of Mappings,
can then be eliminated.

3. The remaining two PermMaps in series are equivalent to a single 3-dimensional Per-
mMap. When these are combined, the resulting PermMap is found to be equivalent to a
3-dimensional UnitMap.

This example is a little contrived, but illustrates how AST_SIMPLIFY can deal with even
quite complicated compound Mappings through a series of incremental simplifications. Where
possible, this will result in either a simpler compound Mapping or, if feasible, an atomic (non-
compound) Mapping, as here. If no simplification is possible, AST_SIMPLIFY will just return
a pointer to the original Mapping.

58 6 COMPOUND MAPPINGS (CMPMAPS)

Although AST_SIMPLIFY cannot identify every simplification that is theoretically possible,
sufficient rules are included to deal with the most common and important cases.

99

7 Representing Coordinate Systems (Frames)

An AST Frame is an Object that is used to represent a coordinate system. Contrast this with
a Mapping (§5), which is used to describe how to convert between coordinate systems. The two
concepts are complementary and we will see how they work together in §13.

In this section we will discuss only basic Frames, which represent Cartesian coordinate systems.
More specialised types of Frame (e.g. the SkyFrame, which represents celestial coordinate sys-
tems, and the SpecFrame, which represents spectral coordinate systems) are covered later (§8
and §9) and, naturally, inherit the properties and behaviour of the simple Frames discussed here.

7.1 The Frame Model

The best way to think about a Frame is like the frame that you would plot around a graph. In
two dimensions, you would have an “z” and a “y” axis, a title on the graph and labels on the
axes, together with an indication of the physical units being plotted. The values marked along
each axis would be formatted in a human-readable way. The frame around a graph therefore
defines a coordinate space within which you can locate points, draw lines, calculate distances,

etc.

An AST Frame works in much the same way, embodying all of these concepts and a few more.
It also allows any number of axes, which means that a Frame can represent coordinate systems
with any number of dimensions. You specify how many when you create it.

Remember that the basic Frame we are considering here is completely general. It knows nothing
of celestial coordinates, for example, and all its axes are equivalent. It can be adapted to describe
any general purpose Cartesian coordinate system by setting its attributes, such as its Title and
axis Labels, etc. to appropriate values.

7.2 Creating a Frame

Creating a Frame is straightforward and follows the usual pattern:

INCLUDE ’AST_PAR’
INTEGER FRAME, STATUS

STATUS = 0

FRAME = AST_FRAME(2, ’ ’, STATUS)

The first argument of the AST_FRAME constructor function specifies the number of axes which
the Frame should have.

7.3 Using a Frame as a Mapping

We should briefly point out that the Frame we created above (§7.2) is also a Mapping (§5.1)
and therefore inherits the properties and behaviour common to other Mappings.

60 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

One way to see this is to set the Frame’s Report attribute (inherited from the Mapping class)
to a non-zero value and pass the Frame pointer to a coordinate transformation routine, such as
AST_TRAN2.

DOUBLE PRECISION XIN(C 5), YIN(C 5), XOUT(5), YOUT(5)
DATA XIN / ODO, 1DO, 2DO, 3DO, 4D0O, 5D0 /
DATA YIN / ODO, 2DO, 4DO, 6DO, 8D0O, 10DO /

CALL AST_SET(FRAME, ’Report=1’, STATUS)
CALL AST_TRAN2(FRAME, 5, XIN, YIN, .TRUE., XOUT, YOUT, STATUS)

The resulting output might then look like this:

(1, 2) -——> 1, 2)
(2, 4) -——> (2, 4
(3, 6) -—> (3, 6)
(4, 8) -—> (4, 8)
(5, 10) -—> (5, 10)

This is not very exciting because a Frame implements an identity transformation just like a
UnitMap (§5.9). However, it illustrates that a Frame can be used as a Mapping and that its
Nin and Nout attributes are both equal to the number of Frame axes.

When we consider more specialised Frames (e.g. §13), we will see that using them as Mappings
can be very useful indeed.

7.4 Frame Axis Attributes

Frames have a number of attributes which can take multiple values, one for each axis. These
separate values are identified by appending the axis number in parentheses to the attribute
name. For example, the Label(1) attribute is a character string containing the label which
appears on the first axis.

Axis attributes are accessed in the same way as all other attributes (§4.5, §4.6 and §4.7). For
example, the Label on the second axis might be obtained as follows:

CHARACTER * (70) LABEL

LABEL = AST_GETC(FRAME, ’Label(2)’, STATUS)

Other attribute access routines (AST_SETx, AST_TEST and AST_CLEAR) may also be ap-
plied to axis attributes in the same way.

If the axis number is stored in a program variable, then its value must be formatted to generate
a suitable attribute name before using this to access the attribute itself. For example, the
following will print out the Label value for each axis of a Frame:

7.5 Frame Attributes 61

CHARACTER * (10) AXIS
INTEGER IAXIS

DO 1 IAXIS = 1, AST_GETI(FRAME, ’Naxes’, STATUS)
WRITE (AXIS, °(I10)’) IAXIS
LABEL = AST_GETC(FRAME, ’Label(’ // AXIS // ’)’, STATUS)
WRITE (%, 199) IAXIS, LABEL
199 FORMAT (’Label ’, I2, ’: ’, A)
1 CONTINUE

Note the use of the Naxes attribute to determine the number of Frame axes.

The output from this might look like the following:

Label 1: Axis 1
Label 2: Axis 2

In this case, the Frame’s default axis Labels have been revealed as rather un-exciting. Normally,
you would set much more useful values, typically when you create the Frame—perhaps something
like:

FRAME = AST_FRAME(2, ’Label(1)=0ffset from centre of field,’ //
’Unit (1) =mm,’ //
’Label (2)=Transmission coefficient,’ //
YUnit(2) =%’, STATUS)

Here, we have also set the (character string) Unit attribute for each axis to describe the physical
units represented on that axis. All the attribute assignments have been combined into a single
string, separated by commas.

7.5 Frame Attributes

We will now briefly outline the various attributes associated with a Frame (this is, of course,
in addition to those inherited from the Mapping class). We will not delve too deeply into the
details of each attribute, for which you should consult the appropriate description in Appendix C.
Instead, we aim simply to sketch the range of facilities available:

Naxes
A read-only integer giving the number of Frame axes.

Title
A string describing the coordinate system which the Frame represents.

Label(axis)
A label string for each axis.

62

7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

Unit (axis)
A string describing the physical units on each axis. You can choose whether to
make this attribute “active” or “passive” (using AST_SETACTIVEUNIT). If
active, its value will be taken into account when finding the Mapping between
two Frames (e.g. a scaling of 0.001 would be used to connect two axis with
units of “km” and “m”). If passive, its value is ignored. Its use is described in
more detail in §7.14.

Symbol(axis)
A string containing a “short form” symbol (e.g. like “X” or “Y”) used to rep-
resent the quantity plotted on each axis.

Digits/Digits(axis)
The preferred number of digits of precision to be used when formatting values
for display on each axis.

Format (axis)
A string containing a format specifier which determines exactly how values
should be formatted for display on each axis (§7.6). If this attribute is un-
set, the formatting is based on the Digits value, otherwise the Format string
over-rides the Digits value.

Direction(axis)
A boolean (integer) value which indicates in which direction each axis should
be plotted. If it is non-zero (the default), the axis should be plotted in the con-
ventional direction—i.e. increasing to the right for the abscissa and increasing
upwards for the ordinate. If it is zero, the axis should be plotted in reverse.
This attribute is provided as a hint only and programs are free to ignore it if
they wish.

Domain
A character string which identifies the physical domain to which the Frame’s
coordinate system applies. The primary purpose of this attribute is to prevent
unwanted conversions from occurring between coordinate systems which are not
related. Its use is described in more detail in §7.12.

System
A character string which identifies the specific coordinate system used to de-
scribe positions within the physical domain represented by the Frame. For a
simple Frame, this attribute currently has a fixed value of “Cartesian”, but could
in principle be extended to include options such as “Polar”, “Cylindrical”, etc.
More specialised Frames such as the SkyFrame, TimeFrame and SpecFrame, re-
define the allowed values to be appropriate to the domain which they describe.
For instance, the SkyFrame allows values such as “FK4” and “Galactic”, and
the SpecFrame allows values such as “frequency” and “wavelength”.

Epoch
This value is used to qualify a coordinate system by giving the moment in time
when the coordinates are correct. Usually, this will be the date of observation.
The Epoch value is important in cases where coordinates systems move with
respect to each other over time. An example of two such coordinate systems
are the FK4 and FK5 celestial coordinate systems.

ObsLon
Specifies the longitude of the observer (assumed to be on the surface of the

7.6 Formatting Axis Values 63

earth). The basic Frame class does not use this value, but specialised sub-
classes may. For instance, the SpecFrame class uses it to calculate the relative
velocity of the observer and the centre of the earth for use in converting between
standards of rest.

ObsLat

Specifies the latitude of the observer. Use in conjunction with ObsLon.

There are also some further Frame attributes, not described above, which are important when
Frames are used as templates to search for other Frames. Their use goes beyond the present
discussion.

7.6 Formatting Axis Values

The coordinate values associated with each axis of a Frame are stored (e.g. within your program)
as double precision values. The Frame class therefore provides a function, AST_FORMAT, to
convert these values into formatted strings for display:

CHARACTER * (50) STRING
DOUBLE PRECISION VALUE

STRING = AST_FORMAT(FRAME, IAXIS, VALUE, STATUS)

Here, the AST_FORMAT character function is passed a Frame pointer, the number of an axis
(IAXIS) and a double precision value to format (VALUE). It returns a character string containing
the formatted value.

By default, the formatting applied will be determined by the Frame’s Digits attribute and
will normally display results with seven digits of precision (corresponding approximately to the
Fortran REAL data type on many machines). Setting a different Digits value, however, allows
you to adjust the precision as necessary to suit the accuracy of the coordinate data you are
processing. If finer control is needed, it is also possible to set a Digits value for each individual
axis by appending an axis number to the attribute name (e.g. “Digits(2)”). If this is done, it
over-rides the effect of the Frame’s main Digits value for that axis.

Even finer control is possible by setting the (character string) Format attribute for a Frame
axis. The string given should contain a format specifier which explicitly determines how the
values on that axis should be formatted. This will over-ride the effects of any Digits value!l.
Unfortunately for Fortran programmers, this must be a C language format specifier,'? so you
might find the Digits approach preferable.

The simplest type of format specifier takes the form “%m.nG”, where “m” and “n” are integers
giving the minimum field width in characters and the number of significant digits to display (e.g.
“%10.5G”). The "n” value may be replaced by an asterisk, in which case the value of the Digits
attribute is used to determine the number of significant digits to display. Other formatting

" The exception to this rule is that if the Format value includes a precision of “.#”, then Digits will be used to
determine the actual precision used.
12This is a consequence of implementing the AST library in C.

64 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

options are also possible and if you need to use them you may wish to consult a book on C
(see the “printf” function), remembering that you want to format a double precision (C double)
value.

It is recommended that you use AST_FORMAT whenever you display formatted coordinate
values, even although you could format them yourself using a WRITE statement. This is
because it puts the Frame in control of formatting. When you start to handle more elaborate
Frames (representing, say, celestial coordinates), you will need different formatting methods.
This approach delivers them without any change to your software.

You should also consider regularly using the AST_NORM routine, described below (§7.7), for
any values that will be made visible to the user of your software.

7.7 Normalising Frame Coordinates

The routine AST_NORM is provided to cope with the fact that some coordinate systems do
not extend indefinitely in all directions. Some may have boundaries, outside which coordinates
are meaningless, while others wrap around on themselves, so that after a certain distance you
return to the beginning again (coordinate systems based on circles and spheres, for instance). A
basic Frame has no such complications, but other more specialised Frames (such as SkyFrames,
representing the celestial sphere—§8) do.

The role played by AST_NORM is to normalise any arbitrary set of coordinates by converting
them into a set which is “within bounds”, interpreted according to the particular Frame in
question. For example, on the celestial sphere, a right ascension value of 24 hours or more can
have a suitable multiple of 24 hours subtracted without affecting its meaning and AST_NORM
would perform this task. Similarly, negative values of right ascension would have a multiple of
24 hours added, so that the result lies in the range zero to 24 hours. The coordinates in question
are modified in place by AST_NORM, as follows:

DOUBLE PRECISION POINT(2)

CALL AST_NORM(FRAME, POINT, STATUS)

If the coordinates supplied are initially OK, as they would always be with a basic Frame, then
they are returned unchanged.

Because the main purpose of AST_NORM is to convert coordinates into the preferred range
for human consumption, its use is almost always appropriate immediately before formatting
coordinate values for display using AST_FORMAT (§7.6). Even if the Frame in question does
not restrict the range of coordinates, so that AST_NORM does nothing, using it will allow you
to process other more specialised Frames, where normalisation is important, without changing
your software.

7.8 Reading Formatted Axis Values

The process of converting a formatted coordinate value for a Frame axis, such as might be
produced by AST_FORMAT (§7.6), back into a numerical (double precision) value ready for

7.8 Reading Formatted Axis Values 65

processing is performed by AST_UNFORMAT. However, although this process is essentially the
inverse of that performed by AST_FORMAT, there are a number of additional difficulties that
must be addressed in practice.

The main use for AST_UNFORMAT is in reading formatted coordinate values which have been
entered by the user of a program, or read from a file. As such, we can rarely assume that the
values are neatly formatted in the way that AST_FORMAT would produce. Instead, it is usually
desirable to allow considerable flexibility in the form of input that can be accommodated, so as
to permit “free-format” data input by the user. In addition, we may need to extract individual
coordinate values embedded in other textual data.

Underlying these requirements is the root difficulty that the textual format used to represent a
coordinate value will depend on the class of Frame we are considering. For example, for a basic
Frame, AST_UNFORMAT may have to read a value like “1.25E-6”, whereas a more specialised
Frame representing celestial coordinates may have to handle a value like “-07d 49m 13s”. Of
course, the format might also depend on which axis is being considered.

Ideally, we would like to write software that can handle any kind of Frame. However, this
makes it a little more difficult to analyse textual input data to extract individual coordinate
values, since we cannot make assumptions about how the values are formatted. It would not be
safe, for example, simply to assume that the values being read are separated by white space.
This is not just because they might be separated by some other character, but also because
celestial coordinate values might themselves contain spaces. In fact, to be completely safe, we
cannot make any assumptions about how a formatted coordinate value is separated from the
surrounding text, except that it should be separated in some way which is not ambiguous.

This is the very basic assumption upon which AST_UNFORMAT works. It is invoked as follows:

INTEGER N

N = AST_UNFORMAT(FRAME, IAXIS, STRING, VALUE, STATUS)

It is supplied with a Frame pointer (FRAME), the number of an axis (IAXIS) and a charac-
ter string to be read (STRING). If it succeeds in reading a value, AST_UNFORMAT returns
the resulting coordinate wia its penultimate argument (VALUE). The returned function value
indicates how many characters were read from the string in order to obtain this result.

The string is read as follows:

1. Any white space at the start is skipped over.

2. Further characters are considered, one at a time, until the next character no longer matches
any of the acceptable forms of input (given the characters that precede it). The longest
sequence of characters which matches is then considered “read”.

3. If a suitable sequence of characters was read successfully, it is converted into a coordinate
value which is returned. Any white space following this sequence is then skipped over and
the total number of characters consumed is returned as the function value.

66 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

4. If the sequence of characters read is empty, or insufficient to define a coordinate value,
then the string does not contain a value to read. In this case, the read is aborted and
AST_UNFORMAT returns a function value of zero and no coordinate value. However, it
returns without error.

Note that failing to read a coordinate value does not constitute an error, at least so far as
AST_UNFORMAT is concerned. However, an error can occur if the sequence of characters
read appears to have the correct form but cannot be converted into a valid coordinate value.
Typically, this will be because it violates some constraint, such as a limit on the value of one of
its fields. The resulting error message will give details.

For any given Frame axis, AST_UNFORMAT does not necessarily always use the same algorithm
for converting the sequence of characters it reads into a coordinate value. This is because some
forms of input (particularly free-format input) can be ambiguous and might be interpreted
in several ways depending on the context. For example, the celestial longitude “12:34:56.7”
could represent an angle in degrees or a right ascension in hours. To decide which to use,
AST_UNFORMAT may examine the Frame’s attributes and, in particular, the appropriate
Format(axis) string which is used by AST_FORMAT when formatting coordinate values (§7.6).
This is done in order that AST_FORMAT and AST_UNFORMAT should complement each
other—so that formatting a value and then un-formatting it will yield the original value, subject
to any rounding error.

To give a simple (but crucially incomplete!) example, consider reading a value for the axis of a
basic Frame, as follows:

N = AST_UNFORMAT(FRAME, IAXIS, ’> 1.5E6 -99.0’, VALUE, STATUS)

AST_UNFORMAT will skip over the initial space in the string supplied and then examine each
successive character. It will accept the sequence “1.5E6” as input, but reject the space which
follows because it does not form part of the format of a floating point number. It will then
convert the characters “1.5E6” into a coordinate value and skip over the three spaces which
follow them. The returned function value will therefore be 9, equal to the total number of
characters consumed. This result may be used to address the string during a subsequent read,
so as to commence reading at the start of “-99.0”.

Most importantly, however, note that if the user of a program mistakenly enters the string
“1.5R6...”7 instead of “ 1.5E6...”, a coordinate value of 1.5 and a function result of 4 will be
returned, because the “R” would prematurely terminate the attempt to read the value. Because
this sort of mistake does not automatically result in an error but can produce incorrect results,
it is vital to check the returned function value to ensure that the expected number of characters
have been read. For example, if the string is expected to contain exactly one value, and nothing
else, then the following would suffice:

N = AST_UNFORMAT(FRAME, IAXIS, STRING, VALUE, STATUS)
IF (STATUS .EQ. O) THEN
IF (N .LT. LEN(STRING)) THEN
<error in input data>
ELSE
<value read correctly>
END IF
END IF

7.8 Reading Formatted Axis Values 67

If AST_UNFORMAT does not detect an error itself, we check that it has read to the end of the
string. If this reveals an error, the value of N indicates where it occurred.

Another common requirement is to obtain a position by reading a list of coordinates from a string
which contains one value for each axis of a Frame. We assume that the values are separated in
some unambiguous manner, perhaps using white space and/or some unspecified single-character
separator. The choice of separator is up to the data supplier, who must choose it so as not to
conflict with the format of the coordinate values, but our software does not need to know what
it is. The following is a template algorithm for reading data in this form:

INTEGER I
DOUBLE PRECISION VALUES(10)

* Initialise the string index.
I=1

* (Obtain the number of Frame axes and loop through them.
DO 1 IAXIS = 1, AST_GETI(FRAME, ’Naxes’, STATUS)

* Attempt to read a value for this axis.
N = AST_UNFORMAT(FRAME, IAXIS, STRING(I :),
VALUES(IAXIS), STATUS)

If nothing was read and this is not the first axis and the end of
the string has not been reached, try stepping over a separator and
reading again.

IF ((N .EQ. O) .AND. (IAXIS .GT. 1) .AND.

(I .LT. LEN(C STRING))) THEN
=I+1
AST_UNFORMAT(FRAME, IAXIS, STRING(I :),
VALUES(IAXIS), STATUS)

I
N

END IF

* Quit if nothing was read, otherwise move on to the next value.
IF (N .EQ. 0) GO TO 2
I=I+N
1 CONTINUE
2 CONTINUE

* Check for possible errors.
IF (STATUS .EQ. 0) THEN
IF ((T .LT. LEN(C STRING)) .OR. (N .EQ. O)) THEN
<error in input data>
ELSE
<values read correctly>
END IF
END IF

In this case, the value of I will indicate the location of any input error.

Note that this algorithm is insensitive to the precise format of the data and will therefore work

68 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

with any class of Frame and any reasonably unambiguous input data. For example, here is a
range of suitable input data for a 3-dimensional basic Frame:

1253

3.1,3.2,3.3

1.5, 2.6, -9.9e2

-1.1+0.4-1.8
.1/.2/.3

44.0 ; 55.1 -14

7.9 Permuting Frame Axes

Once a Frame has been created, it is not possible to change the number of axes it contains, but
it is possible to change the order in which these axes occur. To do so, an integer permutation
array is filled with the numbers of the axes so as to specify the new order, e.g:

INTEGER PERM(2)
DATA PERM / 2, 1 /

In this case, the axes of a 2-dimensional Frame could be interchanged by passing this permutation
array to the AST_PERMAXES function. That is, an (z1,22) coordinate system would be
changed into an (x9, 1) coordinate system by:

CALL AST_PERMAXES(FRAME, PERM, STATUS)

If the axes are permuted more than once, the effects are cumulative. You are, of course, not
restricted to Frames with only two axes.

7.10 Selecting Frame Axes

An alternative to changing the number of Frame axes, which is not allowed, is to create a new
Frame by selecting axes from an existing one. The method of doing this is very similar to the
way AST_PERMAXES is used (§7.9), in that we supply an integer array filled with the numbers
of the axes we want, in their new order. In this case, however, the number of array elements
need not equal the number of Frame axes.

For example, we could select axes 3 and 2 (in that order) from a 3-dimensional Frame as follows:

INTEGER FRAME1, FRAME2, MAPPING, PICK(2)
DATA PICK / 3, 2 /

FRAME2 = AST_PICKAXES(FRAME1l, 2, PICK, MAPPING, STATUS)

This would return a pointer to a 2-dimensional Frame (FRAME2) which contains the information
associated with axes 3 and 2, in that order, from the original Frame (FRAMEL). The original
Frame is not altered by this process. Beware, however, that the axis information may still be

7.11 Calculating Distances, Angles and Offsets 69

shared by both Frames, so if you wish to alter either of them independently you may first need
to use AST_COPY (§4.12) to make an independent copy.

In addition to the new Frame pointer, AST_PICKAXES will also return a pointer to a new
Mapping via its fourth argument. This Mapping will inter-relate the two Frames. By this we
mean that its forward transformation will convert coordinates originally in the coordinate system
represented by FRAMEL into that represented by FRAME2, while its inverse transformation
will convert in the opposite direction. In this particular case, the Mapping would be a PermMap
(85.10) and would implement the following transformations:

Forward:
(1, 2, 3) -—> (3, 2)
(2, 4, 6) -—> (6, 4)
(3, 6, 9) -—> (9, 6)
(4, 8, 12) -—> (12, 8)
(5, 10, 15) -—> (15, 10)

Inverse:
(3, 2) -—> (<bad>, 2, 3)
(6, 4) ——> (<bad>, 4, 6)
(9, 6) -—> (<bad>, 6, 9)
(12, 8) --> (<bad>, 8, 12)
(15, 10) --> (<bad>, 10, 15)

This is our first introduction to the idea of inter-relating pairs of Frames via a Mapping, but
this will assume a central role later on.

Note that when using AST_PICKAXES, it is also possible to request more axes than there
were in the original Frame. This will involve selecting axes from the original Frame that do
not exist. To do this, the corresponding axis number (in the PICK array) should be set to
zero and the effect is to introduce an additional new axis which is not derived from the original
Frame. This axis will have default values for all its attributes. You will need to do this because
AST_PICKAXES does not allow you to select any of the original axes more than once.'?

7.11 Calculating Distances, Angles and Offsets

Some complementary routines are provided for use with Frames to allow you to perform geo-
metric operations without needing to know the nature of the coordinate system represented by
the Frame.

Routines can be used to find the distance between two points, and to offset a specified distance
along a line joining two points, etc. In essence, these define the metric of the coordinate space
which the Frame represents. In the case of a basic Frame, this is a Cartesian metric.

The first of these routines, AST_DISTANCE, returns a double precision distance value when
supplied with the Frame coordinates of two points. For example:

131t will probably not be obvious why this restriction is necessary, but consider creating a Frame with one
longitude axis and two latitude axes. Which latitude axis should be associated with the longitude axis?

70 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

DOUBLE PRECISION DIST, POINT1(2), POINT2(2)
DATA POINT1 / ODO, ODO /
DATA POINT2 / 1DO, 1DO /

DIST = AST_DISTANCE(FRAME, POINT1, POINT2, STATUS)

This calculates the distance between the origin (0,0) and a point at position (1,1). In this case,
the result, as you would expect, is \/2. However, this is only true for the Cartesian coordinate
system which a basic Frame represents. In general, AST_DISTANCE will calculate the geodesic
distance between the two points, so that with a more specialised Frame (such as a SkyFrame,
representing the celestial sphere) a great-circle distance might be returned.

The AST_OFFSET routine is really the inverse of AST_DISTANCE. Given two points in a
Frame, it calculates the coordinates of a third point which is offset a specified distance away
from the first point along the geodesic joining it to the second one. For example:

DOUBLE PRECISION POINT1(2), POINT2(2), POINT3(2)
DATA POINT1 / ODO, ODO /
DATA POINT2 / 1DO, 1DO /

CALL AST_OFFSET(FRAME, POINT1, POINT2, 0.5DO, POINT3, STATUS)

This would fill the POINT3 array with the coordinates of a point which is offset 0.5 units away
from the origin (0,0) in the direction of the position (1,1). Again, this is a simple result in a
Cartesian Frame, as varying the offset will trace out a straight line. On the celestial sphere,
however (e.g. using a SkyFrame), it would trace out a great circle.

The routines AST_AXDISTANCE and AST_AXOFFSET are similar to AST_DISTANCE and
AST_OFFSET, except that the curves which they use as “straight lines” are not geodesics, but
curves parallel to a specified axis'*. One reason for using these routines is to deal with the cyclic
ambiguity of longitude and latitude axes.

The AST_OFFSET2 routine is similar to AST_OFFSET, but instead of using the geodesic
which passes through two positions, it uses the geodesic which passes at a given position angle
through the starting position.

Position angles are always measured from the positive direction of the second Frame axis to
the required line, with positive angles being in the same sense as rotation from the positive
direction of the second axis to the positive direction of the first Frame axis. This definition
applies to all classes of Frame, including SkyFrame. The default ordering of axes in a SkyFrame
makes the second axis equivalent to north, and so the definition of position angle given above
corresponds to the normal astronomical usage, “from north, through east”. However, it should
be remembered that it is possible to permute the axes of a SkyFrame (or indeed any Frame),
so that north becomes axis 1. In this case, an AST “position angle” would be the angle “from
east, through north”. Always take the axis ordering into account when deriving an astronomical
position angle from an AST position angle.

MFor instance, a line of constant Declination is not a geodesic

7.12 The Domain Attribute 71

Within a Cartesian coordinate system, the position angle of a geodesic (i.e. a straight line) is
constant along its entire length, but this is not necessarily true of other coordinate systems.
Within a spherical coordinate system, for instance, the position angle of a geodesic will vary
along its length (except for the special cases of a meridian and the equator). In addition to
returning the required offset position, the AST_OFFSET?2 routine returns the position angle of
the geodesic at the offset position. This is useful if you want to trace out a path which involves
turning through specified angles. For instance, tracing out a rectangle in which each side is a
geodesic involves turning through 90 degrees at the corners. To do this, use AST_OFFSET2 to
calculate the position of each corner, and then add (or subtract) 90 degrees from the position
angle returned by AST_OFFSET2.

The AST_ANGLE routine calculates the angle subtended by two points, at a third point. If
used with a 2-dimensional Frame the returned angle is signed to indicate the sense of rotation
(clockwise or anti-clockwise) in taking the “shortest route” from the first point to the second.
If the Frame has more than 2 axes, the result is un-signed and is always in the range zero to .

The AST_AXANGLE routine is similar to AST_AXANGLE, but the “reference direction”, from
which angles are measured, is a specified axis.

The AST_RESOLVE routine resolves a given displacement within a Frame into two components,
parallel and perpendicular to a given reference direction.

The displacement is specified by two positions within the Frame; the starting and ending po-
sitions. The reference direction is defined by the geodesic curve passing through the starting
position and a third specified position. The lengths of the two components are returned, together
with the position on the reference geodesic which is closest to the third supplied point.

7.12 The Domain Attribute

The Domain attribute is one of the most important properties of a Frame, although the concept
it expresses can sometimes seem a little subtle. We will introduce it here, but its true value will
probably not become apparent until later (§14.2).

To understand the need for the Domain attribute, consider using different Frames to represent
the following different coordinate systems associated with a CCD image:

1. A coordinate system based on pixel numbers.
2. Positions on the CCD chip, measured in pm.
3. Positions in the focal plane of the telescope, measured in mm.

4. A celestial coordinate system, measured in radians.

If we had two such CCD images, we might legitimately want to align them pixel-for-pixel (i.e.
using the coordinate system based on pixel numbers) in order to, say, divide by a flat-field
exposure. We might similarly consider aligning them using any of the other coordinate systems
so as to achieve different results. For example, we might consider merging separate images from
a CCD mosaic by using focal plane positions.

It would obviously not be legitimate, however, to directly compare positions in one image mea-
sured in pixels with positions in the other measured in mm, nor to equate chip positions in pym

72 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

with sky coordinates in radians. If we wanted to inter-compare these coordinates, we would
need to do it indirectly, using other information based on the experimental set-up. For instance,
we might need to know the size of the pixels expressed in mm and the orientation of the CCD
chip in the focal plane.

Note that it is not simply the difference in physical units which prevents certain coordinates from
being directly inter-compared (because the appropriate unit scaling factors could be included
without any additional information). Neither is it the fact that different coordinate systems are
in use (because we could legitimately inter-compare two different celestial coordinate systems
without any extra information). Instead, it is the different nature of the coordinate spaces to
which these coordinate systems have been applied.

We normally express this by saying that the coordinate systems apply to different physical
domains. Although we may establish ad hoc relationships between coordinates in different
physical domains, they are not intrinsically related to each other and we need to supply extra
information before we can convert coordinates between them.

In AST, the role of the (character string) Domain attribute is to assign Frames to their respective
physical domains. The way it operates is as follows:

e Coordinate systems which apply to the same physical domain (i.e. whose Frames have the
same Domain value) can be directly inter-compared.

If the domain has several coordinate systems associated with it (e.g. the celestial sphere),
then a coordinate conversion may be involved. Otherwise, coordinate values may simply
be equated.

e Coordinate systems which apply to different physical domains (i.e. whose Frames have
different Domain values) cannot be directly inter-compared.

If any relationship does exist between such coordinate systems—and it need not—then
additional information must be supplied in order to establish the relationship between
them in any particular case. We will see later (§13) how to establish such relationships
between Frames in different domains.

With the basic Frames we are considering here, each physical domain only has a single (Carte-
sian) coordinate system associated with it, so that if two such Frames have the same Domain
value, their coordinate systems will be identical and may simply be equated. With more spe-
cialised Frames, however, more than one coordinate system may apply to each domain. In such
cases, a coordinate conversion may need to be performed.

When a basic Frame is created, its Domain attribute defaults to a blank string. This means
that all such Frames belong to the same (null) domain by default and therefore describe the
same unspecified physical coordinate space. In order to assign a Frame to a different domain,
you simply need to set its Domain value. This is normally most conveniently done when it is
created, as follows:

FRAME1 = AST_FRAME(2, ’Domain=CCD_CHIP,’ //
’Unit(1)=micron,’ //
’Unit(2)=micron’, STATUS)

FRAME2 = AST_FRAME(2, ’Domain=FOCAL_PLANE,’ //

’Unit(1)=mm,’ //
’Unit(2)=mm’, STATUS)

7.13 Conventions for Domain Names 73

Here, we have created two Frames in different physical domains. Although their coordinate
values all have units of length, they cannot be directly inter-compared (because their axes may
be rotated with respect to each other, for instance).

All Domain values are automatically converted to upper case and white space is removed, but
there are no other restrictions on the names you may use to label different physical domains.
From a practical point of view, however, it is worth following a few conventions (§7.13).

7.13 Conventions for Domain Names

When choosing a value for the Domain attribute of a Frame, it obviously makes sense to avoid
generic names which might clash with those used for similar (but subtly different!) purposes by
other programmers. If you are developing software for an instrument, for example, and want to
identify an instrumental coordinate system, then it is sensible to add a distinguishing prefix. For
instance, you might use <INST>_FOCAL_PLANE, where <INST> (e.g. an acronym) identifies
your instrument.

For some purposes, however, a standard choice of Domain name is desirable so that different
items of software can communicate. For this purpose, the following Domain names are reserved
by AST and the use recommended below should be carefully observed:

GRAPHICS
Identifies the coordinate space used by an underlying computer graphics system
to specify plotting operations. Typically, when performing graphical operations,
AST is used to define additional coordinate systems which are related to these
“native” graphical coordinates. Plotting may be carried out in any of these co-
ordinate systems, but the GRAPHICS domain identifies the native coordinates
through which AST communicates with the underlying graphics system.

GRID
Identifies the instantaneous data grid used to store and handle data, together
with an associated coordinate system. In this coordinate system, the first el-
ement stored in an array of data always has a coordinate value of unity at its
centre and all elements have unit extent. This applies to all dimensions.

If data are copied or transformed to a new data grid (by whatever means), or
a subset of the original grid is extracted, then the same rules apply to the copy
or subset. Its first element therefore has GRID coordinate values of unity at its
centre. Note that this means that GRID coordinates remain attached to the
first element of the data grid and not to its data content (e.g. the features in
an image).
PIXEL

Identifies an array of pixels and an associated pizel-based coordinate system
which is related to the GRID coordinate system (above) simply by a shift of
origin along each axis. This shift may be integral, fractional, positive, negative
or zero. The data elements retain their unit extent along each axis.

Because the amount of shift is unspecified, the PIXEL domain is distinct from
the GRID domain. The relationship between them contains a degree of uncer-
tainty, such as typically arises from the different conventions used by different
software systems. For instance, in some software the first pixel is regarded as

74 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

being centred at (1,1), while in other software it is at (0.5,0.5). In addition, some
software packages implement a “pixel origin” which allows pixel coordinates to
start at an arbitrary value.

The GRID domain (which corresponds with the pixel-numbering convention
used by FITS) is a special case of the PIXEL domain and avoids this uncertainty.
In general, additional information is required in order to convert from one to
the other.

SKY
Identifies the domain which contains all equivalent celestial coordinate systems.
Because these are represented in AST by SkyFrames (§8), it should be no sur-
prise that the default Domain value for a SkyFrame is SKY. Since there is only
one sky, you probably won’t need to change this very often.

SPECTRUM
Identifies the domain used to describe positions within an electro-magnetic spec-
trum. The AST SpecFrame (§9) class describes positions within this domain,
allowing a wide range of different coordinate systems to be used (frequency,
wavelength, etc). The default Domain value for a SpecFrame is SPECTRUM.

TIME
Identifies the domain used to describe moments in time. The AST TimeFrame
class describes positions within this domain, allowing a wide range of different

coordinate systems and timescales to be used. The default Domain value for a
TimeFrame is TIME.

Although we have drawn a necessary distinction here between the GRID and PIXEL domains,
we will continue to refer in general terms to image “pixels” and “pixel coordinates” whenever
this distinction is not important. This should not be taken to imply that the GRID convention
for numbering pixels is excluded—in fact, it is usually to be preferred (at the level of data
handling being discussed in this document) and we recommend it.

7.14 The Unit Attribute

Fach axis of a Frame has a Unit attribute which holds the physical units used to describe
positions on the axis. The index of the axis to which the attribute refers should normally be
placed in parentheses following the attribute name (“Unit(2)” for instance). However, if the
Frame has only a single axis, then the axis index can be omitted.

In versions of AST prior to version 2.0, the Unit attribute was nothing more than a descriptive
string intended purely for human readers—no part of the AST system used the Unit string for
any purpose (other than inclusion in axis labels produced by the Plot class). In particular,
no account was taken of the Unit attribute when finding the Mapping between two Frames.
Thus if the conversion between a pair of 1-dimensional Frames representing velocity was found
(using AST_CONVERT) the returned Mapping would always be a UnitMap, even if the Unit
attributes of the two Frames were “km/h” and “m/s”. This behaviour is referred to below as a
passive Unit attribute.

As of AST version 2.0, a facility exists which allows the Unit attribute to be active; that is,
differences in the Unit attribute may be taken into account when finding the Mapping between
two Frames. In order to minimise the risk of breaking older software, the default behaviour of

7.14 The Unit Attribute 75

simple Frames and SkyFrames is unchanged from previous versions (i.e. they have passive Unit
attributes). However, the new routines AST_SETACTIVEUNIT and AST_GETACTIVEUNIT
allow this default behaviour to be changed. The SpecFrame and TimeFrame classes always have
an active Unit attribute (attempts to change this are ignored).

For instance, consider the above example of two 1-dimensional Frames describing velocity. These
Frames can be created as follows:

INTEGER FRAME1l, FRAME2

FRAME1
FRAME2

AST_FRAME(1, ’Domain=VELOCITY,Unit=km/h’)
AST_FRAME(1, ’Domain=VELOCITY,Unit=m/s’)

By default, these Frames have passive Unit attributes, and so an attempt to find a Mapping
between them would ignore the difference in their Unit attributes and return a unit Mapping.
To avoid this, we indicate that we want these Frames to have active Unit attributes, as follows:

CALL AST_SETACTIVEUNIT(FRAME1, .TRUE., STATUS)
CALL AST_SETACTIVEUNIT(FRAME2, .TRUE., STATUS)

If we then find the Mapping between them as follows:

INTEGER CVT

CVT = AST_CONVERT(FRAME1, FRAME2, ’ ’, STATUS)

the Mapping contained within the FrameSet returned by AST_CONVERT will be a one-dimensional
ZoomMap which simply scales its input (a velocity in km/h) by a factor of 0.278 to create its
output (a velocity in m/s).

In fact we need not have set the Unit attribute active in FRAME]1 since the behaviour of
AST_CONVERT is determined by its TO Frame (the second Frame argument).

7.14.1 The Syntax for Unit Strings

Conversion between units systems relies on the use of a specific syntax for the Unit attribute. If
the value of the Unit attribute does not conform to this syntax, then an error will be reported
if an attempt is made to use it to determine an inter-unit Mapping (this will never happen if
the Unit attribute is passive).

The adopted syntax is that described in FITS-WCS paper I ” Representation of World Coordinate
in FITS” by Greisen & Calabretta. We distinguish here between “basic” units and “derived”
units: derived units are defined in terms of other units (either derived or basic), whereas basic
units have no such definitions. Derived units may be represented by their own symbol (e.g.
“Jy”—the Jansky) or by a mathematical expression which combines other symbols and constants
to form a definition of the unit (e.g. “km/s”—Xkilometres per second). Unit symbols may be
prefixed by a string representing a standard multiple or sub-multiple.

76 7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

In addition to the unit symbols listed in FITS-WCS Paper I, any other arbitrary unit symbol
may be used, with the proviso that it will not be possible to convert between Frames using
such units. The exception to this is if both Frames refer to the same unknown unit string. For
instance, an axis with unknown unit symbol ”"flop” could be converted to an axis with unit
”Mflop” (Mega-flop).

Unit symbols (optionally prefixed with a multiple or sub-multiple) can be combined together
using a limited range of mathematical operators and functions, to produce new units. Such
expressions may also contain parentheses and numerical constants (these may optionally use
“scientific” notation including an “E” character to represent the power of 10).

The following tables list the symbols for the basic and derived units which may be included in
a units string, the standard prefixes for multiples and sub-multiples, and the strings which may
be used to represent mathematical operators and functions.

Basic units

Quantity Symbol | Full Name
length m metre
mass g gram
time S second
plane angle rad radian
solid angle ST steradian
temperature K Kelvin
electric current A Ampere
amount of substance | mol mole
luminous intensity cd candela

7.14.2 Side-effects of Changing the Unit attribute

If an Axis has an active Unit attribute, changing its value (either by setting a new value or by
clearing it so that the default value is re-instated) may cause the Label and Symbol attributes
to be changed accordingly. For instance, if an Axis has Unit, Label and Symbol of “Hz”,
“Frequency” and “nu”, then changing its Unit attribute to “log(Hz)” will cause AST to change
its Label and Symbol to “log(Frequency)” and “Log(nu)”. These changes are only made if the
Unit attribute is active, and a Mapping can be found from the old units to the new units. On
the other hand, changing the Unit from “Hz” to “MHz” would not cause any change to the
Label or Symbol attributes.

7.14 The Unit Attribute

77

Derived units

Quantity Symbol Full Name Definition

area barn barn 1.0E-28 m**2
area pix pixel
area pixel pixel
electric capacitance | F Farad Cc/V
electric charge C Coulomb As
electric conductance | S Siemens A/V
electric potential \% Volt J/C
electric resistance Ohm Ohm V/A
energy J Joule N m
energy Ry Rydberg 13.605692 eV
energy eV electron-Volt 1.60217733E-19 J
energy erg erg 1.0E-7 J
events count count
events ct count
events ph photon
events photon photon
flux density Jy Jansky 1.0E-26 W /m**2 /Hz
flux density R Rayleigh 1.0E10/(4*PI) photon.m**-2 /s/sr
flux density mag magnitude
force N Newton kg m/s**2
frequency Hz Hertz 1/s
illuminance Ix lux Im/m**2
inductance H Henry Wb/A
length AU astronomical unit 1.49598E11 m
length Angstrom | Angstrom 1.0E-10 m
length lyr light year 9.460730E15 m
length pc parsec 3.0867E16 m
length solRad solar radius 6.9599E8 m
luminosity solLum solar luminosity 3.8268E26 W
luminous flux Im lumen cd sr
magnetic field G Gauss 1.0E-4 T
magnetic flux Wb Weber Vs
mass solMass solar mass 1.9891E30 kg
mass u unified atomic mass unit | 1.6605387E-27 kg
magnetic flux density | T Tesla Wb /m**2
plane angle arcmin arc-minute 1/60 deg
plane angle arcsec arc-second 1/3600 deg
plane angle mas milli-arcsecond 1/3600000 deg
plane angle deg degree pi/180 rad
power W Watt J/s
pressure, stress Pa Pascal N/m**2
time a year 31557600 s
time d day 86400 s
time h hour 3600 s
time yr year 31557600 s
time min minute 60 s

D Debye 1.0E-29/3 C.m

7 REPRESENTING COORDINATE SYSTEMS (FRAMES)

Prefixes for multiples & sub-multiples
Sub-multiple Name Prefix | Sub-multiple Name Prefix
1071 deci d 10 deca da
10~2 centi ¢ 102 hecto h
1073 milli m 10 kilo k
10~6 micro u 106 mega M
1079 nano n 10° giga G
1012 pico P 1012 tera T
10~15 femto f 1019 peta P
10-18 atto a 10%8 exa E
102 zepto 7z 102! zetta 7
1072 yocto y 10% yotta Y

Mathematical operators & functions

String Meaning
syml sym2 | multiplication (a space)
sym1*sym2 | multiplication (an asterisk)
syml.sym2 | multiplication (a dot)
syml/sym2 | division
sym1**y exponentiation (y must be a numerical constant)
syml-y exponentiation (y must be a numerical constant)
log(sym1) common logarithm
In(sym1) natural logarithm
exp(syml) | exponential
sqrt(syml) | square root

79

8 Celestial Coordinate Systems (SkyFrames)

A Frame which is specialised for representing coordinate systems on the celestial sphere is
obviously of great importance in astronomy. The SkyFrame is such a Frame. In this section we
examine the additional properties and behaviour of a SkyFrame that distinguish it from a basic
Frame (§7).

8.1 The SkyFrame Model

A SkyFrame is, of course, a Frame (§7) and also a Mapping (§5), so it inherits all the properties
and behaviour of these two ancestral classes. When used as a Mapping, a SkyFrame implements
a unit transformation, exactly like a basic Frame (§7.3) or a UnitMap, so this aspect of its
behaviour is not of great importance.

When used as a Frame, however, a SkyFrame represents a 2-dimensional spherical coordinate
system, in which the shortest distance between two points is a great circle. A SkyFrame there-
fore always has exactly two axes which represent the longitude and latitude of a coordinate
system residing on the celestial sphere. Many such coordinate systems can be represented by a
SkyFrame, as we will see shortly.

A SkyFrame can represent any of the commonly used celestial coordinate systems. Optionally,
the origin of the longitude/latitude system can be moved to any specified point in the standard
celestial system, allowing a SkyFrame to represent offsets from a specified sky position.

When it is first created, a SkyFrame’s axes are always in the order (longitude, latitude) but this
can be changed, if required, by using the AST_PERMAXES routine (§7.9). The order of the
axes can be determined at any time using the LatAxis and LonAxis attributes. A SkyFrame’s
coordinate values are always stored as angles in (double precision) radians, regardless of the
setting of the Unit attribute.

8.2 Creating a SkyFrame

The SkyFrame constructor function is particularly simple and a SkyFrame with default attributes
is created as follows:

INCLUDE ’AST_PAR’
INTEGER SKYFRAME, STATUS

STATUS = 0

SKYFRAME = AST_SKYFRAME(°’> ’, STATUS)

Such a SkyFrame would represent the default celestial coordinate system which, at present, is
the ICRS system (the default was "FK5(J2000)” in versions of AST prior to 3.0).

80 8 CELESTIAL COORDINATE SYSTEMS (SKYFRAMES)

8.3 Specifying a Particular Celestial Coordinate System

For many purposes, the ICRS coordinate system is perfectly adequate. In order to support
conversion between a variety of celestial coordinate systems, however, you can create SkyFrames
that represent any of these.

Selection of a particular coordinate system is performed simply by setting a value for the
SkyFrame’s (character string) System attribute. This setting is most conveniently done when the
SkyFrame is created. For example, a SkyFrame representing the old FK4 (B1950.0) coordinate
system would be created by:

SKYFRAME = AST_SKYFRAME(’System=FK4’, STATUS)

Note that specifying “System=FK4” also changes the associated equinox (from J2000.0 to
B1950.0). This is because the default value of the SkyFrame’s Equinox attribute (§8.4) de-
pends on the System attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix C and include a variety of
equatorial coordinate systems, together with ecliptic and galactic coordinates.

General spherical coordinates are supported by specifying “System=unknown”. You should
note, though, that no Mapping can be created to convert between “unknown” coordinates and
any of the other celestial coordinate systems (see §12).

8.4 Attributes which Qualify Celestial Coordinate Systems

Many celestial coordinate systems have some additional free parameters which serve to identify
a particular coordinate system from amongst a broader class of related coordinate systems. For
example, the FK5 (J2010.0) system is distinguished from the FK5 (J2000.0) system by a different
equinox—and the coordinates of a fixed astronomical source would have different values when
expressed in these two systems.

In AST, these free parameters are represented by additional SkyFrame attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main System attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Frame. Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main SkyFrame attributes which qualify the System attribute are:

Epoch
This attribute is inherited from the Frame class. It gives the moment in time
when the coordinates are correct for the astronomical source under study (usu-
ally the date of observation).

8.5 Using Default SkyFrame Attributes 81

Equinox
This value is used to qualify celestial coordinate systems that are notionally
based on the Earth’s equator and/or the ecliptic (the plane of the Earth’s orbit
around the Sun). The position of either of these planes is difficult to specify
precisely, so in practice a model mean equator and/or ecliptic are used instead.
These, together with the point on the sky that defines the coordinate origin
(termed the mean equinor) move with time according to some model which
smoothes out the more rapid fluctuations. The SkyFrame class supports both
the old FK4 model and the newer FK5 one.
Coordinates expressed in any of these systems vary with time due to movement
(by definition) of the coordinate system itself, and must therefore be qualified
by a moment in time (the epoch of the mean equinox, or “equinox” for short)
which specifies the position of the model coordinate system on the sky. This is
the role of the Equinox attribute.
Note that it is quite valid and common to relate the position of a source to an
equinox other than the date of observation. Usually a standard equinox such
as J2000.0 is used, meaning that the coordinates are referred to axes defined by
where the model mean equator and ecliptic would lie on the sky at the Julian
epoch J2000.0.

For further details of these attributes you should consult their descriptions in Appendix C and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix C). For the interested reader, an excellent overview of celestial
coordinate systems can also be found in the documentation for the SLALIB library (SUN/67).

The value of these qualifying attributes is most conveniently set at the same time as the System
value, e.g. when a SkyFrame is created. For instance:

SKYFRAME = AST_SKYFRAME(’System=Ecliptic, Equinox=J2005.5’, STATUS)

would create a SkyFrame representing an ecliptic coordinate system referred to the mean equinox
and ecliptic of Julian epoch J2005.5.

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System value. Any such values are stored, but are not used unless the System value is
later set so that they become relevant.

8.5 Using Default SkyFrame Attributes
The default values supplied for many SkyFrame attributes will depend on the value of the
SkyFrame’s System attribute. In practice, this means that there is usually little need to specify

many of these attributes explicitly unless you have some special requirement. This can be
illustrated by using AST_SHOW to examine a SkyFrame, as follows:

CALL AST_SHOW(AST_SKYFRAME(’System=FK4-NO-E, Epoch=1958°, STATUS), STATUS)

The output from this might look like the following:

82 8 CELESTIAL COORDINATE SYSTEMS (SKYFRAMES)

Begin SkyFrame # Description of celestial coordinate system
Title = "FK4 equatorial coordinates; no E-terms; mean equinox B1950.0;
epoch B1958.0" # Title of coordinate system

Naxes = 2 # Number of coordinate axes

Domain = "SKY" # Coordinate system domain
Epoch = 1958 # Besselian epoch of observation
Lbll = "Right ascension" # Label for axis 1
Lbl2 = "Declination" # Label for axis 2
System = "FK4-NO-E" # Coordinate system type
Unil = "hh:mm:ss.s" # Units for axis 1
Uni2 = "ddd:mm:ss" # Units for axis 2
Dir1 =0 # Plot axis 1 in reverse direction
Bot2 = -1.5707963267949 # Lowest legal axis value
Top2 = 1.5707963267949 # Highest legal axis value
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
Egnox = 1950 # Besselian epoch of mean equinox

End SkyFrame

Note that the defaults (indicated by the “#” comment character at the start of the line) for
attributes such as the Title, axis Labels and Format specifiers are all set to values appropriate
for the particular equatorial coordinate system that the SkyFrame represents.

This means, for example, that if we were to use this SkyFrame to format a right ascension
value stored in radians using AST_FORMAT (§7.6), it would automatically result in a string
in sexagesimal notation (such as “12:14:35.7”) suitable for display. If we changed the value of
the SkyFrame’s Digits attribute (which is inherited from the Frame class), the number of digits
appearing would also change accordingly.

These choices would be appropriate for a System value of “FK4-NO-E”, but if a different System
value were set, the defaults would be correspondingly different. For example, ecliptic longitude
is traditionally expressed in degrees, so setting “System=ecliptic” would result in coordinate
values being formatted as degrees by default.

Of course, if you do not like any of these defaults, you may always over-ride them by setting
explicit attribute values yourself.

8.6 Formatting Celestial Coordinates

SkyFrames use AST_FORMAT for formatting coordinate values in the same way as other Frames
(§7.6). However, they offer a different set of formatting options more appropriate to celestial
coordinates.

The Digits attribute of a SkyFrame behaves in essentially the same way as for a basic Frame
(§7.6), so the precision with which celestial coordinates are displayed can also be adjusted in this

8.6 Formatting Celestial Coordinates 83

way. However, the range of format specifiers that can be given for the Format(axis) attribute,
and the default format resulting from any particular Digits value, is different.

The syntax of SkyFrame format specifiers is detailed under the description of the Format(axis)
attribute in Appendix C. Briefly, however, it allows celestial coordinates to be expressed either
as angles or times and to include one or more of the fields:

e degrees or hours
e arc-minutes or minutes

e arc-seconds or seconds

with a specified number of decimal places for the final field. A range of field separators is also
available, as the following examples show:

Format Specifier | Example Formatted Value

d 219

d.3 219.123

dm 219:05

dm.2 219:05.44
dms 219:05:42
hms.1 15:44:13.8
bdms . 2 219 05 42.81
lhms.3 15h44m13.88s
+zlhms +06h10m44s
ms.1 13145:42.8
Imst.3 876m22.854s
s.2 788742.81

Note the following key points:

e The required fields are specified using characters chosen from either “dms” or “hms”
according to whether the value is to be formatted as an angle (in degrees) or a time (in
hours).

e If no degrees or hours field is required, the distinction between angle and time may be
made by including “t” to request time.

e The number of decimal places (for the final field) is indicated using “.” followed by an
integer. An asterisk can be used in place of an integer, in which case the number of decimal
places is chosen so that the total number of digits in the formatted value is equal to the
value of the Digits attribute.

e “b” causes fields to be separated by blanks, while “I” causes them to be separated by the
appropriate letters (the default being a colon).

e “z” causes padding with leading zeros.

e “4” cause a plus sign to be prefixed to positive values (negative values always have a
minus sign).

84 8 CELESTIAL COORDINATE SYSTEMS (SKYFRAMES)

The formatting performed by a SkyFrame is also influenced by the AsTime(axis) attribute,
which has a boolean (integer) value for each SkyFrame axis. It determines whether the default
format specifier for an axis will present values as angles (e.g. in degrees) if it is zero, or as times
(e.g. in hours) if it is non-zero.

The default AsTime value depends on the celestial coordinate system which the SkyFrame
represents which, in turn, depends on its System attribute value. For example, equatorial
longitude values (right ascension) are normally expressed in hours, whereas ecliptic longitudes
are normally expressed in degrees, so their default AsTime values will reflect this difference.

The value of the AsTime attribute may be set explicitly to over-ride these defaults if required,
with the formatting precision being determined by the Digits/Digits(axis) value. Alternatively,
the Format(axis) attribute may be set explicitly to specify both the format and precision re-
quired. Setting an explicit Format value always over-rides the effects of both the Digits and
AsTime attributes (unless the Format value does not specify the required number of decimal
places, in which case Digits is used to determine the default number of decimal places)

8.7 Reading Formatted Celestial Coordinates

The process of converting formatted celestial coordinates, such as might be produced by the
AST_FORMAT function (§8.6), into numerical (double precision) coordinate values is performed
by using AST_UNFORMAT (§7.8) and passing it a pointer to a SkyFrame. The use of a
SkyFrame means that the range of input formats accepted is appropriate to positions on the sky
expressed as angles and/or times, while the returned value is in radians.

The following describes the forms of celestial coordinate which are supported:

e You may supply an optional sign, followed by between one and three fields representing
either degrees, arc-minutes, arc-seconds or hours, minutes, seconds (e.g. “—12 42 03”).

e Each field should consist of a sequence of one or more digits, which may include leading
zeros. At most one field may contain a decimal point, in which case it is taken to be the
final field (e.g. decimal degrees might be given as “124.707”, while degrees and decimal
arc-minutes might be given as “—13 33.8”).

e The first field given may take any value, allowing angles and times outside the conventional
ranges to be represented. However, subsequent fields must have values of less than 60 (e.g.
“720 45 317 is valid, whereas “11 45 61” is not).

[3%2)

e Fields may be separated by white space or by “:” (colon), but the choice of separator must
be used consistently throughout the value. Additional white space may be present around
fields and separators (e.g. “— 2: 04 : 7.1”).

e The following field identification characters may be used as separators to replace those
above (or may be appended to the final field), in order to identify the field to which they
are appended:

8.7 Reading Formatted Celestial Coordinates 85

— degrees

hours

— minutes (of arc or time)
— seconds (of arc or time)
— arc-minutes

" — arc-seconds

o5 B A
\

Either lower or upper case may be used. Fields must be given in order of decreasing
significance (e.g. “—11D 3’ 14.4"” or “22h14m11.2s”).

e The presence of certain field identification characters indicates whether the value is to be
interpreted as an angle or a time (with 24 hours corresponding to 360 degrees), as follows:

d - angle
> — angle
" — angle
h — time

Incompatible angle/time identification characters may not be mixed (e.g. “10h14°3"” is
not valid). The remaining field identification characters and separators do not specify a
preference for an angle or a time and may be used with either.

e If no preference for an angle or a time is expressed anywhere within the value, then it
is interpreted as an angle if the Format attribute string associated with the SkyFrame
axis generates an angle and as a time otherwise. This ensures that values produced by
AST_FORMAT (§8.6) are correctly interpreted by AST_UNFORMAT.

e Fields may be omitted, in which case they default to zero. The remaining fields may
be identified by using appropriate field identification characters (see above) and/or by
adding extra colon separators (e.g. “—05m13s” is equivalent to “—:05:13”). If a field is
not identified explicitly, it is assumed that adjacent fields have been given, after taking
account of any extra separator characters. For example:

10d — degrees

10d12 - degrees and arc-minutes

11:14" - arc-minutes and arc-seconds

9h13s — hours and seconds of time

:45:33 — minutes and seconds (of arc or time)
:55: — minutes (of arc or time)

213 — seconds (of arc or time)

—6::2.5 — degrees/hours and seconds (of arc or time)
07ml4 - minutes and seconds (of arc or time)
—8:14° — degrees and arc-minutes

—h3:14 - minutes and seconds of time

h:2.1 — seconds of time

e If fields are omitted in such a way that the remaining ones cannot be identified uniquely
(e.g. “01:02”), then the first field (either given explicitly or implied by an extra leading
colon separator) is taken to be the most significant field that AST_FORMAT would pro-
duce when formatting a value (using the Format attribute associated with the SkyFrame

86 8 CELESTIAL COORDINATE SYSTEMS (SKYFRAMES)

axis). By default, this means that the first field will normally be interpreted as degrees or
hours. However, if this does not result in consistent field identification, then the last field
(either given explicitly or implied by an extra trailing colon separator) is taken to to be
the least significant field that AST_FORMAT would produce.

This final convention is intended to ensure that values formatted by AST_FORMAT which con-
tain less than three fields will be correctly interpreted if read back using AST_UNFORMAT, even
if they do not contain field identification characters. However, it also affects other forms of input.
For example, if the Format(axis) string were set to “mst.1” (producing two fields representing
minutes and seconds of time), then formatted input would be interpreted by AST_UNFORMAT
as follows:

1213 — minutes and seconds

12 — minutes

113 — seconds

—18: — minutes

12.8 — minutes

123 - hours, minutes and seconds
4’ — arc-minutes

60::" — degrees

—23:" — arc-minutes

—33h - Thours

(in the last four cases, explicit field identification has been given which overrides the implicit
identification).

Alternatively, if the Format(axis) string were set to “s.3” (producing only an arc-seconds field),
then formatted input would be interpreted by AST_UNFORMAT as follows:

12.8 — arc-seconds

12 13 — arc-minutes and arc-seconds

112 — arc-seconds

13: — arc-minutes

123 — degrees, arc-minutes and arc-seconds

In general, if you are preparing formatted input data containing celestial coordinates and wish
to omit certain fields, then you are advised to identify clearly those that you do provide by using
the appropriate field identification characters and/or extra colon separators. This prevents you
depending on the implicit field identification described above which, in turn, depends on an
appropriate Format(axis) string having been set.

When writing software, it is also a good idea to set the Format(axis) string so that data input
will be as simple as possible for the user. Unless some special effect is desired, this normally
means that it should contain “d” or “h” to ensure that the first field entered by the user will be
interpreted as degrees or hours, unless otherwise identified. This is the normal behaviour unless
an explicit Format(axis) value has been set to override the default.

8.8 Representing Offsets from a Specified Sky Position 87

8.8 Representing Offsets from a Specified Sky Position

A SkyFrame can be modified so that its longitude and latitude axes are referred to an origin
at any specified sky position. Such a coordinate system is referred to as an “offset” coordinate
syetem. First, the System attribute should be set to represent the celestial coordinate system
in which the origin is to be specified. Then the SkyRef attribute should be set to hold the
coordinates of the origin within the selected celestial coordinate system.

By default, “north” in the new offset coordinate system is parallel to north in the original celestial
coordinate system. However, the direction of north in the offset system can be controlled by
assigning a value to the SkyRefP attribute. This attribute should be assigned the celestial
coordinates of a point which is on the zero longitude meridian and which has non-zero latitude.

By default, the position given by the SkyRef attribute is used as the origin of the new longi-
tude/latitude system, but an option exists to use it as the north pole of the system instead. This
option is controlled by the SkyRefls attribute. The choice of value for SkyRefls depends on what
sort of offset coordinate system you want. Setting SkyRefls to “Origin” (the default) produces
an offset coordinate system which is approximately Cartesian close to the specified position.
Setting SkyRefls to “Pole” produces an offset coordinate system which is approximately Polar
close to the specified position.

88

8 CELESTIAL COORDINATE SYSTEMS (SKYFRAMES)

89

9 Spectral Coordinate Systems (SpecFrames)

The SpecFrame is a Frame which is specialised for representing coordinate systems which de-
scribe a position within an electro-magnetic spectrum. In this section we examine the additional
properties and behaviour of a SpecFrame that distinguish it from a basic Frame (§7).

9.1 The SpecFrame Model

As for a SkyFrame, a SpecFrame is a Frame (§7) and also a Mapping (§5), so it inherits all the
properties and behaviour of these two ancestral classes. When used as a Mapping, a SpecFrame
implements a unit transformation, exactly like a basic Frame (§7.3) or a UnitMap, so this aspect
of its behaviour is not of great importance.

When used as a Frame, however, a SpecFrame represents a wide range of different 1-dimensional
coordinate system which can be used to describe positions within a spectrum. The options
available largely mirror those described in the FITS-WCS paper III Representations of spectral
coordinates in FITS (Greisen, Valdes, Calabretta & Allen).

9.2 Creating a SpecFrame

The SpecFrame constructor function is particularly simple and a SpecFrame with default at-
tributes is created as follows:

INCLUDE ’AST_PAR’
INTEGER SPECFRAME, STATUS

STATUS = 0

SPECFRAME = AST_SPECFRAME(’ ’, STATUS)

Such a SpecFrame would represent the default coordinate system which is heliocentric wave-
length in metres (i.e. wavelength corrected to take into account the Doppler shift caused by the
velocity of the observer around the sun).

9.3 Specifying a Particular Spectral Coordinate System

Selection of a particular coordinate system is performed simply by setting a value for the
SpecFrame’s (character string) System attribute. This setting is most conveniently done when
the SpecFrame is created. For example, a SpecFrame representing Energy would be created by:

SPECFRAME = AST_SPECFRAME(’System=Energy’, STATUS)

Note that specifying “System=Energy” also changes the associated Unit (from metres to Joules).
This is because the default value of the SpecFrame’s Unit attribute depends on the System
attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix C and include a variety of
velocity systems, together with frequency, wavelength, energy, wave-number, etc.

90 9 SPECTRAL COORDINATE SYSTEMS (SPECFRAMES)

9.4 Attributes which Qualify Spectral Coordinate Systems

Many spectral coordinate systems have some additional free parameters which serve to identify
a particular coordinate system from amongst a broader class of related coordinate systems. For
example, the velocity systems are all parameterised by a rest frequency—the frequency which
defines zero velocity, and all coordinate systems are qualified by a ‘standard of rest” which
indicates the rest frame to which the values refer.

In AST, these free parameters are represented by additional SpecFrame attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main System attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Frame. Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main SpecFrame attributes which qualify the System attribute are:

Epoch
This attribute is inherited from the Frame class. It gives the moment in time
when the coordinates are correct for the astronomical source under study (usu-
ally the date of observation). It is needed in order to calculate the Doppler shift
produced by the velocity of the observer relative to the centre of the earth, and
of the earth relative to the sun.

StdOfRest
This specifies the rest frame in which the coordinates are correct. Transforming
between different standards of rest involves taking account of the Doppler shift
introduced by the relative motion of the two standards of rest.

RestFreq
Specifies the frequency which correspond to zero velocity. When setting a value
for this attribute, the value may be supplied as a wavelength (including an
indication of the units being used, “nm” “Angstrom”, etc.), which will be au-
tomatically be converted to a frequency.

RefRA
Specifies the RA (FK5 J2000) of the source. This is used when converting
between standards of rest. It specifies the direction along which the component
of the relative velocity of the two standards of rest is taken.

RefDec
Specifies the Dec (FK5 J2000) of the source. Used in conjunction with REFRA.

SourceVel
This defines the “source” standard of rest. This is a rest frame which is mov-
ing towards the position given by RefRA and RefDec, at a velocity given by
SourceVel. The velocity is stored internally as a heliocentric velocity, but can
be given in any of the other supported standards of rest.

9.5 Using Default SpecFrame Attributes 91

For further details of these attributes you should consult their descriptions in Appendix C and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix C).

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System value. Any such values are stored, but are not used unless the System value is
later set so that they become relevant.

9.5 Using Default SpecFrame Attributes

The default values supplied for many SpecFrame attributes will depend on the value of the
SpecFrame’s System attribute. In practice, this means that there is usually little need to specify
many of these attributes explicitly unless you have some special requirement. This can be
illustrated by using AST_SHOW to examine a SpecFrame, as follows:

CALL AST_SHOW(AST_SPECFRAME(’System=Vopt, RestFreq=250 GHz’, STATUS),
: STATUS)

The output from this might look like the following:

Begin SpecFrame # Description of spectral coordinate system
Title = "Optical velocity, rest frequency = 250 GHz" # Title
of coordinate system

Naxes = 1 # Number of coordinate axes

Domain = "SPECTRUM" # Coordinate system domain
Epoch = 2000 # Julian epoch of observation
Lbll = "Optical velocity" # Label for axis 1
System = "VOPT" # Coordinate system type
Unil = "km/s" # Units for axis 1
Ax1 = # Axis number 1
Begin Axis # Coordinate axis
End Axis
IsA Frame # Coordinate system description
SoR = "Heliocentric" # Standard of rest
RstFrq = 250000000000 # Rest frequency (Hz)

End SpecFrame

Note that the defaults (indicated by the “#” comment character at the start of the line) for
attributes such as the Title, axis Labels and Unit specifiers are all set to values appropriate for
the particular velocity system that the SpecFrame represents.

These choices would be appropriate for a System value of “Vopt”, but if a different System value
were set, the defaults would be correspondingly different. For example, by default frequency is
measured in units of GHz, not km/s, so setting “System=freq” would change the appropriate
line above from:

Unil = "km/s" # Units for axis 1

92 9 SPECTRAL COORDINATE SYSTEMS (SPECFRAMES)

to
Unil = "GHz" # Units for axis 1

Of course, if you do not like any of these defaults, you may always over-ride them by setting
explicit attribute values yourself. For instance, you may choose to have your frequency axis
expressed in “kHz” rather than “GHz”. To do this simply set the attribute value as follows:

CALL AST_SETC(SPECFRAME, °’Unit’, ’kHz’, STATUS)

No error will be reported if you accidentally set an inappropriate Unit value (say ”J” - Joules)—
after all, AST cannot tell what you are about to do, and you may be about to change the System
value to “Energy”. However, an error will be reported if you attempt to find a conversion between
two SpecFrames (for instance using AST_CONVERT) if either SpecFrame has a Unit value
which is inappropriate for its System value.

SpecFrame attributes, like all other attributes, all have default value. However, be aware that
for some attributes these default values can never be more than “a legal numerical value” and
have no astronomical significance. For instance, the RefRA and RefDec attributes (which give
the source position) both have a default value of zero. So unless your source happens to be
at that point (highly unlikely!) you will need to set new values. Likewise, the RestFreq (rest
frequency) attribute has an arbitrary default value of 1.0E5 GHz. Some operations are not
affected by inappropriate values for these attributes (for instance, converting from frequency to
wavelength, changing axis units, etc), but some are. For instance, converting from frequency
to velocity requires a correct rest frequency, moving between different standards of rest requires
a correct source position. The moral is, always set explicit values for as many attributes as
possible.

9.6 Creating Spectral Cubes

You can use a SpecFrame to describe the spectral axis in a data cube containing two spatial axes
and a spectral axis. To do this you would create an appropriate SpeckFrame, together with a
2-dimensional Frame (often a SkyFrame) to describe the spatial axes. You would then combine
these two Frames together into a single CmpFrame.

INTEGER SKYFRAME
INTEGER SPECFRAME
INTEGER CMPFRAME

SKYFRAME = AST_SKYFRAME(’Epoch=J2002’, STATUS)

SPECFRAME = AST_SPECFRAME(’System=Freq,Std0fRest=LSRK’,

: STATUS)

CMPFRAME = AST_CMPFRAME(SKYFRAME, SPECFRAME, ’ ’, STATUS)

In the resulting CmpFrame, axis 1 will be RA, axis 2 will be Dec and axis 3 will be Frequency.
If this is not the order you want, you can permute the axes using AST_PERMAXES.

There is one potential problem with this approach if you are interested in unusually high ac-
curacy. Conversion between different standards of rest involves taking account of the Doppler

9.7 Handling Dual-Sideband Spectra 93

shift caused by the relative motion of the two standards of rest. At some point this involves
finding the component of the relative velocity in the direction of interest. For a SpecFrame, this
direction is always given by the RefRA and RefDec attributes, even if the SpecFrame is embed-
ded within a CmpFrame as above. It would be more appropriate if this “direction of interest”
was specified by the values passed into the CmpFrame on the RA and DEC axes, allowing each
pixel within a data cube to have a slightly different correction for Doppler shift.

Unfortunately, the SpecFrame class cannot do this (since it is purely a 1-dimensional Frame),
and so some small degree of error will be introduced when converting between standards of rest,
the size of the error varying from pixel to pixel. It is hoped that at some point in the future a
sub-class of CmpFrame (a SpecCubeFrame) will be added to AST which allows for this spatial
variation in Doppler shift.

The maximum velocity error introduced by this problem is of the order of V x SIN(FOV),
where FFOV is the angular field of view, and V is the relative velocity of the two standards of
rest. As an example, when correcting from the observers rest frame (i.e. the topocentric rest
frame) to the kinematic local standard of rest the maximum value of V' is about 20 km/s, so
for 5 arc-minute field of view the maximum velocity error introduced by the correction will be
about 0.03 km/s. As another example, the maximum error when correcting from the observers
rest frame to the local group is about 5 km/s over a 1 degree field of view.

9.7 Handling Dual-Sideband Spectra

Dual sideband super-heterodyne receivers produce spectra in which each channel contains con-
tributions from two different frequencies, referred to as the “upper sideband frequency” and the
“lower sideband frequency”. In the rest frame of the observer (topocentric), these are related to
each other as follows:

flsb = 2~fLO - fusb (1)

where fro is a fixed frequency known as the “local oscillator frequency”. In other words, the
local oscillator frequency is always mid-way between any pair of corresponding upper and lower
sideband frequencies'®. If you want to describe the spectral axis of such a spectrum using a
SpecFrame you must choose whether you want the SpecFrame to describe fiq or fus - a basic
SpecFrame cannot describe both sidebands simultaneously. However, there is a sub-class of
SpecFrame, called DSBSpecFrame, which overcomes this difficulty.

A DSBSpecFrame has a SideBand attribute which indicates if the DSBSpecFrame is currently
being used to describe the upper or lower sideband spectral axis. The value of this attribute
can be changed at any time. If you use the AST_CONVERT function to find the Mapping
between two DSBSpecFrames, the setting for the two SideBand attributes will be taken into
account. Thus, if you take a copy of a DSBSpecFrame, toggle its SideBand attribute, and then
use AST_CONVERT to find a Mapping from the original to the modified copy, the resulting
Mapping will be of the form of equation 1 (if the DSBSpecFrame has its StdOfRest attribute
set to “Topocentric”).

In general, when finding a Mapping between two arbitrary DSBSpecFrames, the total Mapping
is made of of three parts in series:

15Note, this simple relationship only applies if all frequencies are topocentric.

94 9 SPECTRAL COORDINATE SYSTEMS (SPECFRAMES)

1. A Mapping which converts the first DSBSpecFrame into its upper sideband representa-
tion. If the DSBSpecFrame already represents its upper sideband, this Mapping will be a
UnitMap.

2. A Mapping which converts from the first to the second DSBSpecFrame, treating them as if
they were both basic SpecFrames. This takes account of any difference in units, standard
of rest, system, etc between the two DSBSpecFrames.

3. A Mapping which converts the second DSBSpecFrame from its upper sideband representa-
tion to its current sideband. If the DSBSpecFrame currently represents its upper sideband,
this Mapping will be a UnitMap.

If an attempt is made to find the Mapping between a DSBSpecFrame and a basic SpecFrame,
then the DSBSpecFrame will be treated like a basic SpecFrame. In other words, the returned
Mapping will not be affected by the setting of the SideBand attribute (or any of the other
attributes specific to the DSBSpecFrame class).

In practice, the local oscillator frequency for a dual sideband instrument may not be easily
available to an observer. Instead, it is common practice to specify the spectral position of some
central feature in the observation (commonly the centre of the instrument passband), together
with an “intermediate frequency”. Together, these two values allow the local oscillator frequency
to be determined. The intermediate frequency is the difference between the topocentric frequency
at the central spectral position and the topocentric frequency of the local oscillator. So:

fLO = fcentral + fzf (2)

The DSBSpecFrame class uses the DSBCentre attribute to specify the central spectral position
(feentrat), and the IF attribute to specify the intermediate frequency (f;). The DSBCentre
value is given and returned in the spectral system described by the DSBSpecFrame (thus you
do not need to calculate the corresponding topocentric frequency yourself - this will be done
automatically by the DSBSpecFrame when you assign a new value to the DSBCentre attribute).
The value assigned to the IF attribute should always be a topocentric frequency in units of Hz,
however a negative value may be given to indicate that the DSBCentre value is in the upper
sideband (that is, if IF < 0 then feentrar > fro). A positive value for IF indicates that the
DSBCentre value is in the lower sideband (that is, if IF' > 0 then feentral < fLO)-

95

10 Time Systems (TimeFrames)

The TimeFrame is a Frame which is specialised for representing moments in time. In this section
we examine the additional properties and behaviour of a TimeFrame that distinguish it from a
basic Frame (§7).

10.1 The TimeFrame Model

As for a SkyFrame, a TimeFrame is a Frame (§7) and also a Mapping (§5), so it inherits all the
properties and behaviour of these two ancestral classes. When used as a Mapping, a TimeFrame
implements a unit transformation, exactly like a basic Frame (§7.3) or a UnitMap, so this aspect
of its behaviour is not of great importance.

When used as a Frame, however, a TimeFrame represents a wide range of different 1-dimensional
coordinate system which can be used to describe moments in time. Absolute times and relative
(i.e. elapsed) times are supported (attribute TimeOrigin), as are a range of different time scales
(attribute TimeScale). An absolute or relative value in any time scale can be represented in
different forms such as Modified Julian Date, Julian Epoch, etc (attribute System). AST extends
the definition of these systems to allow them to be used with any unit of time (attribute Unit).
The TimeFrame class also allows times to formatted as either a simple floating point value or
as a Gregorian date and time of day (attribute Format).

10.2 Creating a TimeFrame

The TimeFrame constructor function is particularly simple and a TimeFrame with default at-
tributes is created as follows:

INCLUDE ’AST_PAR’
INTEGER TIMEFRAME, STATUS

STATUS = 0

TIMEFRAME = AST_TIMEFRAME(> ’, STATUS)

Such a TimeFrame would represent the default coordinate system which is Modified Julian Date
(with the usual units of days) in the International Atomic Time (TAI) time scale.

10.3 Specifying a Particular Time System

By setting the System attribute appropriately, the TimeFrame can represent Julian Date, Mod-
ified Julian Date, Julian Epoch or Besselian Epoch (the time scale is specified by a separate
attribute called TimeScale).

Selection of a particular coordinate system is performed simply by setting a value for the Time-
Frame’s (character string) System attribute. This setting is most conveniently done when the
TimeFrame is created. For example, a TimeFrame representing Julian Epoch would be created
by:

96 10 TIME SYSTEMS (TIMEFRAMES)

TIMEFRAME = AST_TIMEFRAME(’System=JEPOCH’, STATUS)

Note that specifying “System=JEPOCH” also changes the associated default Unit (from days
to years). This is because the default value of the TimeFrame’s Unit attribute depends on the
System attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix C.

10.4 Attributes which Qualify Time Coordinate Systems

Time coordinate systems require some additional free parameters to identify a particular co-
ordinate system from amongst a broader class of related coordinate systems. For example, all
TimeFrames are qualified by the time scale (that is, the physical process used to define the flow
of time), and some require the position of the observer’s clock.

In AST, these free parameters are represented by additional TimeFrame attributes, each of
which has a default appropriate to (i.e. defined by) the setting of the main System attribute.
Each of these qualifying attributes may, however, be assigned an explicit value so as to select a
particular coordinate system. Note, it is usually best to assign explicit values whenever possible
rather than relying on defaults. Attribute should only be left at their default value if you “don’t
care” what value is used. In certain circumstances (particularly, when aligning two Frames), a
default value for an attribute may be replaced by the value from another similar Frame. Such
value replacement can be prevented by assigning an explicit value to the attribute, rather than
simply relying on the default.

The main TimeFrame attributes which qualify the System attribute are:

TimeScale
This specifies the time scale.

LT Offset
This specifies the offset from Local Time to UTC in hours (time zones east of
Greenwich have positive values). Note, AST uses the value as supplied without
making any correction for daylight saving.

TimeOrigin
This specifies the zero point from which time values are measured, within the
system specified by the System attribute. Thus, a value ofzero (the default)
indicates that time values represent absolute times. Non-zero values may be
used to indicate that the TimeFrame represents elapsed time since the specified
origin.

For further details of these attributes you should consult their descriptions in Appendix C and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix C).

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System or TimeScale value. Any such values are stored, but are not used unless the
System and/or TimeScale value is later set so that they become relevant.

97

11 Compound Frames (CmpFrames)

We now turn to a rather special form of Mapping, the CmpFrame. The Frames we have consid-
ered so far have been atomic, in the sense that they represent pre-defined elementary physical
domains. A CmpFrame, however, is a compound Frame. In essence, it is a structure for con-
taining other Frames and its purpose is to allow those Frames to work together in various
combinations while appearing as a single Object. A CmpFrame’s behaviour is therefore not
pre-defined, but is determined by the other Frames it contains (its “component” Frames).

As with compound Mappings, compound Frames can be nested within each other, forming
arbitrarily complex Frames.

11.1 Creating a CmpFrame

A very common use for a CmpFrame within astronomy is to represent a “spectral cube”. This
is a 3-dimensional Frame in which one of the axes represents position within a spectrum, and
the other two axes represent position on the sky (or some other spatial domain such as the
focal plane of a telescope). As an example, we create such a CmpFrame in which axes 1 and 2
represent Right Ascension and Declination (ICRS), and axis 3 represents wavelength (these are
the default coordinate Systems represented by a SkyFrame and a SpecFrame respectively):

INTEGER SKYFRAME
INTEGER SPECFRAME
INTEGER CMPFRAME

SKYFRAME = AST_SKYFRAME(’ °’, STATUS)

SPECFRAME = AST_SPECFRAME(’ ’, STATUS)
CMPFRAME = AST_CMPFRAME(SKYFRAME, SPECFRAME, ’ ’, STATUS)

If it was desired to make RA and Dec correspond to axes 1 and 3, with axis 2 being the spectral
axis, then the axes of the CmpFrame created above would need to be permuted as follows:

INTEGER PERM(3)

PERM(1) 1
PERM(2) 3
PERM(3) = 2
CALL AST_PERMAXES(CMPFRAME, PERM, STATUS)

11.2 The Attributes of a CmpFrame

A CmpFrame is a Frame and so has all the attributes of a Frame. The default value for
the Domain attribute for a CmpFrame is formed by concatenating the Domains of the two
component Frames, separated by a minus sign (“-”).1® The (fixed) value for its System attribute

161f both component Frames have blank Domains, then the default Domain for the CmpFrame is the string
“CMP”'

98 11 COMPOUND FRAMES (CMPFRAMES)

is “Compound”.'” A CmpFrame has no further attributes over and above those common to all
Frames. However, attributes of the two component Frames can be accessed as if they were
attributes of the CmpFrame, as described below.

Frame attributes which are specific to individual axes (such as Label(2), Format(1), etc) simply
mirror the corresponding axes of the relevant component Frame. That is, if the “Label(2)”
attribute of a CmpFrame is accessed, the CmpFrame will forward the access request to the
component Frame which contains axis 2. Thus, default values for axis attributes will be the
same as those provided by the component Frames.

An axis index can optionally be appended to the name of Frames attributes which do not
normally have such an index (System, Domain, Epoch, Title, etc). If this is done, the access
request is forwarded to the component Frame containing the indicated axis. For instance, if a
CmpFrame contains a SpecFrame and a SkyFrame in that order, and the axes have not been
permuted, then getting the value of attribute “System” will return “Compound” as mentioned
above (that is, the System value of the CmpFrame as a whole), whereas getting the value of
attribute “System(1)” will return “Spectral” (that is, the System value of the component Frame
containing axis 1 — the SpecFrame).

This technique is not limited to attributes common to all Frames. For instance, the SkyFrame
class defines an attribute called Equinox which is not held by other classes of Frames. To set a
value for the Equinox attribute of the SkyFrame contained within the above CmpFrame, assign
the value to the “Equinox(2)” attribute of the CmpFrame. Since the SkyFrame defines both
axes 2 and 3 of the CmpFrame, we could equivalently have set a value for “Equinox(3)” since
this would also result in the attribute access being forwarded to the SkyFrame.

Finally, if an attribute is not qualified by a axis index, attempts will be made to access it
using each of the CmpFrame axes in turn. Using the above example of the spectral cube, if an
attempt was made to get the value of attribute “Equinox” (with no axis index), each axis in turn
would be used. Since axis 1 is contained within a SpecFrame, the first attempt would fail since
the SpecFrame class does not have an Equinox attribute. However, the second attempt would
succeed because axis 2 is contained within a SkyFrame which does have an Equinox attribute.
Thus the returned attribute value would be that obtained from the SkyFrame containing axis
2. When getting or testing an attribute value, the returned value is determined by the first axis
which recognises the attribute. When setting an attribute value, all axes which recognises the
attribute have the attribute value set to the given value. Likewise, when clearing an attribute
value, all axes which recognises the attribute have the attribute value cleared.

17 Any attempt to change the System value of a CmpFrame is ignored.

99

12 An Introduction to Coordinate System Conversions

In this section, we start to look at techniques for converting between different coordinate systems.
At this stage, the tools we have available are Frames (§7), SkyFrames (§8), SpecFrames (§9),
TimeFrames (§10) and various Mappings (§5). These are sufficient to allow us to begin examining
the problem, but more sophisticated approaches will also emerge later (§14.2).

12.1 Converting between Celestial Coordinate Systems

We begin by examining how to convert between two celestial coordinate systems represented
by SkyFrames, as this is both an illuminating and practical example. Consider the problem of
converting celestial coordinates between:

1. The old FK4 system, with no E terms, a Besselian epoch of 1958.0 and a Besselian equinox
of 1960.0.

2. An ecliptic coordinate system based on the mean equinox and ecliptic of Julian epoch
2010.5.

This example is arbitrary but not completely unrealistic. Unless you already have expertise with
such conversions, you are unlikely to find it straightforward.

Using AST, we begin by creating two SkyFrames to represent these coordinate systems, as
follows:

INCLUDE ’AST_PAR’
INTEGER SKYFRAME1, SKYFRAME2, STATUS

STATUS = O
SKYFRAME1 = AST_SKYFRAME(’System=FK4-NO-E, Epoch=B1958, Equinox=B1960°, STATUS)
SKYFRAME2 = AST_SKYFRAME(’System=Ecliptic, Equinox=J2010.5°, STATUS)

Note how specifying the coordinate systems consists simply of initialising the attributes of each
SkyFrame appropriately. The next step is to find a way of converting between these SkyFrames.
This is done using AST_CONVERT, as follows:

INTEGER CVT

CVT = AST_CONVERT(SKYFRAME1, SKYFRAME2, ’> ’, STATUS)
IF (CVT .EQ. AST__NULL) THEN
<conversion is not possible>
ELSE
<conversion is possible>
END IF

100 12 AN INTRODUCTION TO COORDINATE SYSTEM CONVERSIONS

The third argument of AST_CONVERT is not used here and should be a blank string.

AST_CONVERT will return a null result, AST__NULL (as defined in the AST_PAR include
file), if conversion is not possible. In this example, conversion is possible, so it will return a
pointer to a new Object that describes the conversion.

The Object returned is called a FrameSet. We have not discussed FrameSets yet (§13), but for
the present purposes we can consider them simply as Objects that can behave both as Mappings
and as Frames. It is the FrameSet’s behaviour as a Mapping in which we are mainly interested
here, because the Mapping it implements is the one we require—i.e. it converts between the two
celestial coordinate systems (§14.1).

For example, if ALPHA1 and DELTAL1 are two arrays containing the longitude and latitude, in
radians, of N points on the sky in the original coordinate system (corresponding to SKYFRAME1),
then they could be converted into the new coordinate system (represented by SKYFRAME?2)
as follows:

INTEGER N
DOUBLE PRECISION ALPHA1(N), DELTA1(N)
DOUBLE PRECISION ALPHA2(N), DELTA2(N)

CALL AST_TRAN2(CVT, N, ALPHA1, DELTA1, .TRUE., ALPHA2, DELTA2, STATUS)

The new coordinates are returned via the ALPHA2 and DELTA2 arrays. To transform coordi-
nates in the opposite direction, we simply invert the 5th (logical) argument to AST_TRAN2, as
follows:

CALL AST_TRAN2(CVT, N, ALPHA2, DELTA2, .FALSE., ALPHA1, DELTA1, STATUS)

The FrameSet returned by AST_CONVERT also contains information about the SkyFrames

used in the conversion (§14.1). As we mentioned above, a FrameSet may be used as a Frame and

in this case it behaves like the “destination” Frame used in the conversion (i.e. like SKYFRAME?2).
We could therefore use the CVT FrameSet to calculate the distance between two points (with

coordinates in radians) in the destination coordinate system, using AST_DISTANCE:

DOUBLE PRECISION DISTANCE, POINT1(2), POINT2(2)

DISTANCE = AST_DISTANCE(CVT, POINT1, POINT2, STATUS)

and the result would be the same as if the SKYFRAME2 SkyFrame had been used.

Another way to see how the FrameSet produced by astConvert retains information about the
coordinate systems involved is to set its Report attribute (inherited from the Mapping class) so
that it displays the coordinates before and after conversion (§4.8):

CALL AST_SET(CVT, ’Report=1’, STATUS)
CALL AST_TRAN2(CVT, N, ALPHA1l, DELTA1, .TRUE., ALPHA2, DELTA2, STATUS)

12.2 Converting between Spectral Coordinate Systems 101

The output from this might look like the following:

(2:06:03.0, 34:22:39) --> (42.1087, 20.2717)
(2:08:20.6, 35:31:24) --> (43.0197, 21.1705)
(2:10:38.1, 36:40:09) --> (43.9295, 22.0716)
(2:12:55.6, 37:48:55) --> (44.8382, 22.9753)
(2:15:13.1, 38:57:40) --> (45.7459, 23.8814)
(2:17:30.6, 40:06:25) --> (46.6528, 24.7901)
(2:19:48.1, 41:15:11) --> (47.5589, 25.7013)
(2:22:05.6, 42:23:56) --> (48.4644, 26.6149)
(2:24:23.1, 43:32:41) --> (49.3695, 27.5311)
(2:26:40.6, 44:41:27) --> (50.2742, 28.4499)

Here, we see that the input FK4 equatorial coordinate values (given in radians) have been
formatted automatically in sexagesimal notation using the conventional hours for right ascension
and degrees for declination. Conversely, the output ecliptic coordinates are shown in decimal
degrees, as is conventional for ecliptic coordinates. Both are displayed using the default precision
of 7 digits.'®

In fact, the CVT FrameSet has access to all the information in the original SkyFrames which
were passed to AST_CONVERT. If you had set a new Digits attribute value for either of these,
the formatting above would reflect the different precision you requested by displaying a greater
or smaller number of digits.

12.2 Converting between Spectral Coordinate Systems

The principles described in the previous section for converting between celestial coordinate
systems also apply to the task of converting between spectral coordinate systems. As an example,
let’s look at how we might convert between frequency measured in GH z as measured in the rest
frame of the telescope, and radio velocity measured in km/s measured with respect the kinematic
Local Standard of Rest.

First we create a default SpecFrame, and then set its attributes to describe the required radio
velocity system (this is slightly more convenient, given the relatively large number of attributes,
than specifying the attribute values in a single string such as would be passed to the SpecFrame
constructor). We then take a copy of this SpecFrame, and change the attribute values so that
the copy describes the original frequency system (modifying a copy, rather than creating a new
SpecFrame from scratch, avoids the need to specify the epoch, reference position, etc a second
time since they are all inherited by the copy):

INCLUDE ’AST_PAR’
INTEGER SPECFRAME1, SPECFRAME2, STATUS

STATUS = 0

18The leading digit is zero and is therefore not seen in this particular example.

102 12 AN INTRODUCTION TO COORDINATE SYSTEM CONVERSIONS

SPECFRAME1 = AST_SPECFRAME(’ ’, STATUS)

CALL AST_SETC(SPECFRAME1l, ’System=vradio’, STATUS)

CALL AST_SETC(SPECFRAME1, ’Unit=km/s’, STATUS)

CALL AST_SETC(SPECFRAME1, ’Epoch=1996-0Oct-2 12:13:56.985°,
: STATUS)

CALL AST_SETC(SPECFRAME1l, ’ObsLon=W155:28:18°, STATUS)
CALL AST_SETC(SPECFRAME1l, ’ObsLat=N19:49:34’, STATUS)
CALL AST_SETC(SPECFRAME1, ’RefRA=18:14:50.6’, STATUS)
CALL AST_SETC(SPECFRAME1, ’RefDec=-4:40:49’, STATUS)

CALL AST_SETC(SPECFRAME1l, ’RestFreq=230.538 GHz’, STATUS)
CALL AST_SETC(SPECFRAME1l, ’StdOfRest=LSRK’, STATUS)

SPECFRAME2 = AST_COPY(SPECFRAME1, STATUS)

CALL AST_SETC(SPECFRAME1, ’System=freq’, STATUS)

CALL AST_SETC(SPECFRAME1, ’Unit=GHz’, STATUS)

CALL AST_SETC(SPECFRAME1l, ’StdOfRest=Topocentric’, STATUS)

Note, the fact that a SpecFrame has only a single axis means that we were able to refer to
the Unit attribute without an axis index. The other attributes are: the time of of observation
(Epoch), the geographical position of the telescope (ObsLat & ObsLon), the position of the
source on the sky (RefRA & RefDec), the rest frequency (RestFreq) and the standard of rest
(StdOfRest).

The next step is to find a way of converting between these SpecFrames. We use exactly the same
code that we did in the previous section where we were converting between celestial coordinate
systems:

INTEGER CVT

CVT = AST_CONVERT(SPECFRAME1, SPECFRAME2, °’> °, STATUS)
IF (CVT .EQ. AST__NULL) THEN
<conversion is not possible>
ELSE
<conversion is possible>
END IF

A before, this will give us a FrameSet (assuming conversion is possible, which should always be
the case for our example), and we can use the FrameSet to convert between the two spectral
coordinate systems. We use AST_TRANT1 in place of AST_TRAN2 since a SpecFrame has only
one axis (unlike a SkyFrame which has two).

For example, if FRQ is an array containing the observed frequency, in GHz, of N spectral
channels (describe by SPECFRAMEL), then they could be converted into the new coordinate
system (represented by SPECFRAME?2) as follows:

INTEGER N
DOUBLE PRECISION FRQ(N)
DOUBLE PRECISION VEL(N)

12.3 Converting between Time Coordinate Systems 103

CALL AST_TRAN1(CVT, N, FRQ, .TRUE., VEL, STATUS)

The radio velocity values are returned in the VEL array.

12.3 Converting between Time Coordinate Systems
All the principles outlined in the previous section about aligning spectral cocordinate systems

(SpecFrames) can be applied directly to the problem of aligning time coordinate systems (Time-
Frames).

12.4 Handling SkyFrame Axis Permutations

We can illustrate an important point if we swap the axis order of either SkyFrame in the example
above (§12.1) before identifying the conversion. Let’s assume we use AST_PERMAXES (§7.9)
to do this to the second SkyFrame, before applying AST_CONVERT, as follows:

INTEGER PERM(2)
DATA PERM / 2, 1 /

CALL AST_PERMAXES(SKYFRAME2, PERM, STATUS)
CVT = AST_CONVERT(SKYFRAME1, SKYFRAME2, ’> ’, STATUS)
Now, the destination SkyFrame system no longer represents the coordinate system:
(ecliptic longitude, ecliptic latitude)
but instead represents the transposed system:
(ecliptic latitude, ecliptic longitude)

As a consequence, when we use the FrameSet returned by AST_CONVERT to apply a coordinate
transformation, we obtain something like the following:

(2:06:03.0, 34:22:39) --> (20.2717, 42.1087)
(2:08:20.6, 35:31:24) —--> (21.1705, 43.0197)
(2:10:38.1, 36:40:09) --> (22.0716, 43.9295)
(2:12:55.6, 37:48:55) —--> (22.9753, 44.8382)
(2:15:13.1, 38:57:40) --> (23.8814, 45.7459)
(2:17:30.6, 40:06:25) —--> (24.7901, 46.6528)
(2:19:48.1, 41:15:11) --> (25.7013, 47.5589)
(2:22:05.6, 42:23:56) --> (26.6149, 48.4644)
(2:24:23.1, 43:32:41) --> (27.5311, 49.3695)
(2:26:40.6, 44:41:27) --> (28.4499, 50.2742)

104 12 AN INTRODUCTION TO COORDINATE SYSTEM CONVERSIONS

When compared to the original (§12.1), the output coordinate order has been swapped to com-
pensate for the different destination SkyFrame axis order.

In all, there are four possible axis combinations, corresponding to two possible axis orders for each
of the source and destination SkyFrames, and AST_CONVERT will convert correctly between
any of these. The point to note is that a SkyFrame contains knowledge about how to convert
to and from other SkyFrames. Since its two axes (longitude and latitude) are distinguishable,
the conversion is able to take account of the axis order.

If you need to identify the axes of a SkyFrame explicitly, taking into account any axis permu-
tations, the LatAxis and LonAxis attributes can be used. These are read-only attributes which
give the indices of the latitude and longitude axes respectively.

12.5 Converting Between Frames
Having seen how clever SkyFrames are (§12.1 and §12.4), we will next examine how dumb a

basic Frame can be in comparison. For example, if we create two 2-dimensional Frames and use
AST_CONVERT to derive a conversion between them, as follows:

INTEGER FRAME1l, FRAME2

FRAME1 = AST_FRAME(2, ° ’, STATUS)
FRAME2 = AST_FRAME(2, ’ ’, STATUS)
CVT = AST_CONVERT(FRAME1, FRAME2, ’ ’, STATUS)

then the coordinate transformation which the “cvt” FrameSet performs will be as follows:

(1, 2) -—> (1, 2)
(2, 4) -—> (2, 4)
(3, 6) -—> (3, 6)
(4, 8) -—> (4, 8)
(5, 10) --> (5, 10)

This is an identity transformation, exactly the same as a UnitMap (§5.9). Even if we permute
the axis order of our Frames, as we did above (§12.4), we will fare no better. The conversion
between our two basic Frames will always be an identity transformation.

The reason for this is that, unlike a SkyFrame, all basic Frames start life the same and have
axes that are indistinguishable. Therefore, permuting their axes doesn’t make them look any
different—they still represent the same coordinate system.

12.6 The Choice of Alignment System

In practice, when AST is asked to find a conversion between two Frames describing two different
coordinate systems on a given physical domain, it uses an intermediate “alignment” system.
Thus, when finding a conversion from system A to system B, AST first finds the Mapping from
system A to some alignment system, system C, and then finds the Mapping from this system C

12.6 The Choice of Alignment System 105

to the required system B. It finally concatenates these two Mappings to get the Mapping from
system A to system B.

One advantage of this is that it cuts down the number of conversion algorithms required. If there
are N different Systems which may be used to describe positions within the Domain, then this
approach requires about 2 x N conversion algorithms to be written. The alternative approach
of going directly from system A to system B would require about IV x N conversion algorithms.

In addition, the use of an intermediate alignment system highlights the nature of the conversion
process. What do we mean by saying that a Mapping “converts a position in one coordinate
system into the corresponding position in another”? In practice, it means that the input and
output coordinates correspond to the same coordinates in some third coordinate system. The
choice of this third coordinate system, the “alignment” system, can completely alter the nature
of the Mapping. The Frame class has an attribute called AlignSystem which can be used to
specify the alignment system.

As an example, consider the case of aligning two spectra calibrated in radio velocity, but each
with a different rest frequency (each spectrum will be described by a SpecFrame). Since the rest
frequencies differ, a given velocity will correspond to different frequencies in the two spectra. So
when we come to “align” these two spectra (that is, find a Mapping which converts positions
in one SpecFrame to the corresponding positions in the other), we have the choice of aligning
the frequencies or aligning the velocities. Different Mappings will be required to describe these
two forms of alignment. If we set AlignSystem to “Freq” then the returned Mapping will align
the frequencies described by the two SpecFrames. On the other hand, if we set AlignSystem to
“Vradio” then the returned Mapping will align the velocities.

Some choices of alignment system are redundant. For instance, in the above example, changing
the alignment system from frequency to wavelength has no effect on the returned Mapping: if
two spectra are aligned in frequency they will also be aligned in wavelength (assuming the speed
of light doesn’t change).

The default value for AlignSystem depends on the class of Frame. For a SpecFrame, the default
is wavelength (or equivalently, frequency) since this is the system in which observations are
usually made. The SpecFrame class also has an attribute called AlignStdOfRest which allows
the standard of rest of the alignment system to be specified. Similarly, the TimeFrame class
has an attribute called AlignTimeScale which allows the time scale of the alignment system to
be specified. Currently, the SkyFrame uses ICRS as the default for AlignSystem, since this is a
close approximation to an inertial frame of rest.

106 12 AN INTRODUCTION TO COORDINATE SYSTEM CONVERSIONS

107

13 Coordinate System Networks (FrameSets)

We saw in §12 how AST_CONVERT could be used to find a Mapping that inter-relates a pair
of coordinate systems represented by Frames. There is a limitation to this, however, in that
it can only be applied to coordinate systems that are inter-related by suitable conventions. In
the case of celestial coordinates, the relevant conventions are standards set out by the Inter-
national Astronomical Union, and others, that define what these coordinate systems mean. In
practice, however, the relationships between many other coordinate systems are also of practical
importance.

Consider, for example, the focal plane of a telescope upon which an image of the sky is falling.
We could measure positions in this focal plane in millimetres or, if there were a detector system
such as a CCD present, we could count pixels. We could also use celestial coordinates of many
different kinds. All of these systems are equivalent in their effectiveness at specifying positions
in the focal plane, but some are more convenient than others for particular purposes.

Although we could, in principle, convert between all of these focal plane coordinate systems,
there is no pre-defined convention for doing so. This is because the conversions required depend
on where the telescope is pointing and how the CCD is mounted in the focal plane. Clearly,
knowledge about this cannot be built into the AST library and must be supplied in some other
way. Note that this is exactly the same problem as we met in §7.12 when discussing the Domain
attribute—i.e. coordinate systems that apply to different physical domains require that extra
information be supplied before we can convert between them.

What we need, therefore, is a general way to describe how coordinate systems are inter-related,
so that when there is no convention already in place, we can define our own. We can then look
forward to converting, say, from pixels into galactic coordinates and wvice versa. In AST, the
FrameSet class provides this capability.

13.1 The FrameSet Model

Consider a coordinate system (call it number 1) which is represented by a Frame of some kind.
Now consider a Mapping which, when applied to the coordinates in system 1 yields coordinates
in another system, number 2. The Mapping therefore inter-relates coordinate systems 1 and 2.

Now consider a second Mapping which inter-relates system 1 and a further coordinate system,
number 3. If we wanted to convert coordinates between systems 2 and 3, we could do so by:

1. Applying our first Mapping in reverse, so as to convert between systems 2 and 1.

2. Applying the second Mapping, as given, to convert between systems 1 and 3.

We are not limited to three coordinate systems, of course. In fact, we could continue to introduce
any number of further coordinate systems, so long as we have a suitable Mapping for each one
which relates it to one of the Frames already present. Continuing in this way, we can build up
a network in which Frames are inter-related by Mappings in such a way that there is always a
way of converting between any pair of coordinate systems.

The FrameSet (Figure 7) encapsulates these ideas. It is a network composed of Frames and
associated Mappings, in which there is always exactly one path, via Mappings, between any pair
of Frames. Since we assemble FrameSets ourselves, they can be used to represent any coordinate
systems we choose and to set up the particular relationships between them that we want.

108 13 COORDINATE SYSTEM NETWORKS (FRAMESETS)

13.2 Creating a FrameSet

Before we can create a FrameSet, we must have a Frame of some kind to put into it, so let’s
create a simple one:

INCLUDE ’AST_PAR’
INTEGER FRAME1, STATUS

STATUS

0

FRAME1

AST_FRAME(2, ’Domain=A’, STATUS)

We have set this Frame’s Domain attribute (§7.12) to A so that it will be distinct from the others
we will be using. We can now create a new FrameSet containing just this Frame, as follows:

INTEGER FRAMESET

FRAMESET = AST_FRAMESET(FRAME1, ’> ’, STATUS)

So far, however, this Frame isn’t related to any others.

13.3 Adding New Frames to a FrameSet

We can now add further Frames to the FrameSet created above (§13.2). To do so, we must
supply a new Frame and an associated Mapping that relates it to any of the Frames that are
already present (there is only one present so far). To keep the example simple, we will just use
a ZoomMap that multiplies coordinates by 10. The required Objects are created as follows:

INTEGER FRAME2, MAPPING12

FRAME2 = AST_FRAME(2, ’Domain=B’, STATUS)
MAPPING12 = AST_ZOOMMAP(2, 10.0DO, ’> °’, STATUS)

To add the new Frame into our FrameSet, we use the AST_ADDFRAME routine:
CALL AST_ADDFRAME(FRAMESET, 1, MAPPING12, FRAME2, STATUS)

Whenever a Frame is added to a FrameSet, it is assigned an integer index. This index starts
with 1 for the initial Frame used to create the FrameSet (§13.2) and increments by one every
time a new Frame is added. This index is the primary way of identifying the Frames within a
FrameSet.

13.4 The Base and Current Frames 109

Gase Frame FrameSet
Frame 1 Current Frame
iy
Frame 3
Frame 2

Figure 11: An example FrameSet, in which Frames 2 and 3 are related to Frame 1 by multiplying
its coordinates by factors of 10 and 5 respectively. The FrameSet’s Base attribute has the value
1 and its Current attribute has the value 3. The transformation performed when the FrameSet
is used as a Mapping (i.e. from its base to its current Frame) is shown in bold.

When a Frame is added, we also have to specify which of the existing ones the new Frame is
related to. Here, we chose number 1, the only one present so far, and the new one we added
became number 2.

Note that a FrameSet does not make copies of the Frames and Mappings that you insert into
it. Instead, it holds pointers to them. This means that if you retain the original pointers to
these Objects and alter them, you will indirectly be altering the FrameSet’s contents. You can,
of course, always use AST_COPY (§4.12) to make a separate copy of any Object if you need to
ensure its independence.

We could also add a third Frame into our FrameSet, this time defining a coordinate system
which is reached by multiplying the original coordinates (of FRAME1) by 5:

CALL AST_ADDFRAME(FRAMESET, 1,

AST_Z0OOMMAP(2, 5.0D0, ’ °, STATUS),
AST_FRAME(2, ’Domain=C’, STATUS),
STATUS)

Here, we have avoided storing unnecessary pointer values by using function invocations di-
rectly as arguments for AST_ADDFRAME. This assumes that we are using AST_BEGIN and
AST_END (§4.10) to ensure that Objects are correctly deleted when no longer required.

Our example FrameSet now contains three Frames and two Mappings with the arrangement
shown in Figure 11. The total number of Frames is given by its read-only Nframe attribute.

13.4 The Base and Current Frames

At all times, one of the Frames in a FrameSet is designated to be its base Frame and one to be
its current Frame (Figure 11). These Frames are identified by two integer FrameSet attributes,
Base and Current, which hold the indices of the nominated Frames within the FrameSet.

110 13 COORDINATE SYSTEM NETWORKS (FRAMESETS)

The existence of the base and current Frames reflects an important application of FrameSets,
which is to attach coordinate systems to entities such as data arrays, data files, plotting surfaces
(for graphics), etc. In this context, the base Frame represents the “native” coordinate system of
the attached entity—for example, the pixel coordinates of an image or the intrinsic coordinates
of a plotting surface. The other Frames within the FrameSet represent alternative coordinate
systems which may also be used to refer to positions within that entity. The current Frame
represents the particular coordinate system which is currently selected for use. For instance, if
an image were being displayed, you would aim to label it with coordinates corresponding to the
current Frame. In order to see a different coordinate system, a software user would arrange for
a different Frame to be made current.

The choice of base and current Frames may be changed at any time, simply by assigning new
values to the FrameSet’s Base and Current attributes. For example, to make the Frame with
index 3 become the current Frame, you could use:

CALL AST_SETI(FRAMESET, ’Current’, 3, STATUS)

You can nominate the same Frame to be both the base and current Frame if you wish.

By default (i.e. if the Base or Current attribute is un-set), the first Frame added to a FrameSet
becomes its base Frame and the last one added becomes its current Frame.!” Whenever a new
Frame is added to a FrameSet, the Current attribute is modified so that the new Frame becomes
the current one. This behaviour is reflected in the state of the example FrameSet in Figure 11.

13.5 Referring to the Base and Current Frames

It is often necessary to refer to the base and current Frames (§13.4) within a FrameSet, but it
can be cumbersome having to obtain their indices from the Base and Current attributes on each
occasion. To make this easier, two parameter constants, AST__BASE and AST__CURRENT,
are defined in the AST_PAR include file and may be used to represent the indices of the base
and current Frames respectively. They may be used whenever a Frame index is required.

For example, when adding a new Frame to a FrameSet (§13.3), you could use the following to
indicate that the new Frame is related to the existing current Frame, whatever its index happens
to be:

INTEGER FRAME, MAPPING

CALL AST_ADDFRAME(FRAMESET, AST__CURRENT, MAPPING, FRAME, STATUS)

Of course, the Frame you added would then become the new current Frame.

19 Although this is reversed if the FrameSet’s Invert attribute is non-zero.

13.6 Using a FrameSet as a Mapping 111

13.6 Using a FrameSet as a Mapping

The FrameSet class inherits properties and behaviour from the Frame class (§7) and, in turn,
from the Mapping class (§5). Its behaviour when used as a Mapping is particularly important.

Consider, for instance, passing a FrameSet pointer to a coordinate transformation routine such
as AST_TRAN2:

INTEGER N
DOUBLE PRECISION XIN(N), YIN(N)
DOUBLE PRECISION XOUT(N), YOUT(N)

CALL AST_TRAN2(FRAMESET, N, XIN, YIN, .TRUE., XOUT, YOUT, STATUS)

The coordinate transformation applied by this FrameSet would be the one which converts be-
tween its base and current Frames. Using the FrameSet in Figure 11, for example, the coordinates
would be multiplied by a factor of 5. If we instead requested the FrameSet’s inverse transfor-
mation, we would be transforming from its current Frame to its base Frame, so our example
FrameSet would then multiply by a factor of 0.2.

Whenever the choice of base and current Frames changes, the transformations which a FrameSet
performs when used as a Mapping also change to reflect this. The Nin and Nout attributes
may also change in consequence, because they are determined by the numbers of axes in the
FrameSet’s base and current Frames respectively. These numbers need not necessarily be equal,
of course.

Like any Mapping, a FrameSet may also be inverted by changing the boolean sense of its Invert
attribute, e.g. using AST_INVERT (§5.5). If this is happens, the values of the FrameSet’s Base
and Current attributes are interchanged, along with its Nin and Nout attributes, so that its
base and current Frames swap places. When used as a Mapping, the FrameSet will therefore
perform the inverse transformation to that which it performed previously.

To summarise, a FrameSet may be used exactly like any other Mapping which inter-relates the
coordinate systems described by its base and current Frames.

13.7 Extracting a Mapping from a FrameSet

Although it is very convenient to use a FrameSet when a Mapping is required (§13.6), a Frame-
Set necessarily contains additional information and sometimes this might cause inefficiency or
confusion. For example, if you wanted to use a Mapping contained in one FrameSet and insert
it into another, it would probably not be efficient to insert the whole of the first FrameSet into
the second one, although it would work.

In such a situation, the AST_GETMAPPING function allows you to extract a Mapping from
a FrameSet. You do this by specifying the two Frames which the Mapping should inter-relate
using their indices within the FrameSet. For example:

MAP = AST_GETMAPPING(FRAMESET, 2, 3, STATUS)

112 13 COORDINATE SYSTEM NETWORKS (FRAMESETS)

would return a pointer to a Mapping that converted between Frames 2 and 3 in the FrameSet.
Its inverse transformation would then convert in the opposite direction, i.e. between Frames 3
and 2. Note that this Mapping might not be independent of the Mappings contained within the
FrameSet—i.e. they may share sub-Objects—so AST_COPY should be used to make a copy if
you need to guarantee independence (§4.12).

Very often, the Mapping returned by AST_GETMAPPING will be a compound Mapping, or
CmpMap (§6). This reflects the fact that conversion between the two Frames may need to be
done via an intermediate coordinate system so that several stages may be involved. You can,
however, easily simplify this Mapping (where this is possible) by using the AST_SIMPLIFY
function (§6.7) and this is recommended if you plan to use it for transforming a large amount
of data.

13.8 Using a FrameSet as a Frame

A FrameSet can also be used as a Frame, in which capacity it almost always behaves as if
its current Frame had been used instead. For example, if you request the Title attribute of a
FrameSet using:

CHARACTER * (80) TITLE

TITLE = AST_GETC(FRAMESET, ’Title’, STATUS)

the result will be the Title of the current Frame, or a suitable default if the current Frame’s Title
attribute is un-set. The same also applies to other attribute operations—i.e. setting, clearing
and testing attributes. Most attributes shared by both Frames and FrameSets behave in this
way, such as Naxes, Label(axis), Format(axis), etc. There are, however, a few exceptions:

Class

Has the value “FrameSet”.
ID

Identifies the particular FrameSet (not its current Frame).
Nin

Equals the number of axes in the FrameSet’s base Frame.
Invert

Is independent of any of the Objects within the FrameSet.
Nobject

Counts the number of active FrameSets.
RefCount

Counts the number of active pointers to the FrameSet (not to its current Frame).

Note that the set of attributes possessed by a FrameSet can vary, depending on the nature of its
current Frame. For example, if the current Frame is a SkyFrame (§8), then the FrameSet will
acquire an Equinox attribute from it which can be set, enquired, etc. However, if the current
Frame is changed to be a basic Frame, which does not have an Equinox attribute, then this
attribute will be absent from the FrameSet as well. Any attempt to reference it will then result
in an error.

13.9 Extracting a Frame from a FrameSet 113

13.9 Extracting a Frame from a FrameSet

Although a FrameSet may be used in place of its current Frame in most situations, it is sometimes
convenient to have direct access to a specified Frame within it. This may be obtained using the
AST_GETFRAME function, as follows:

FRAME = AST_GETFRAME(FRAMESET, AST__BASE, STATUS)

This would return a pointer (not a copy) to the base Frame within the FrameSet. Note the use
of AST__BASE (§13.5) as shorthand for the value of the FrameSet’s Base attribute, which gives
the base Frame’s index.

13.10 Removing a Frame from a FrameSet

Removing a Frame from a FrameSet is straightforward and is performed using the AST_REMOVEFRAME
routine. You identify the Frame you wish to remove in the usual way, by giving its index within
the FrameSet. For example, the following would remove the Frame with index 1:

CALL AST_REMOVEFRAME(FRAMESET, 1, STATUS);

The only restriction is that you cannot remove the last remaining Frame because a FrameSet
must always contain at least one Frame. When a Frame is removed, the Frames which follow
it are re-numbered (i.e. their indices are reduced by one) so as to preserve the sequence of
consecutive Frame indices. The FrameSet’s Nframe attribute is also decremented.

If appropriate, AST_REMOVEFRAME will modify the FrameSet’s Base and/or Current at-
tributes so that they continue to identify the same Frames as previously. If either the base or
current Frame is removed, however, the corresponding attribute will become un-set, so that it
reverts to its default value (§13.4) and therefore identifies an alternative Frame.

Note that it is quite permissible to remove any Frame from a FrameSet, even although other
Frames may appear to depend on it. For example, in Figure 11, if Frame 1 were removed, the
correct relationship between Frames 2 and 3 would still be preserved, although they would be
re-numbered as Frames 1 and 2.

114 13 COORDINATE SYSTEM NETWORKS (FRAMESETS)

115

14 Higher Level Operations on FrameSets

14.1 Creating FrameSets with AST_CONVERT

Before considering the important subject of using FrameSets to convert between coordinate
systems (§14.2), let us return briefly to reconsider the output generated by AST_CONVERT.
We used this function earlier (§12), when converting between the coordinate systems represented
by various kinds of Frame, and indicated that it returns a FrameSet to represent the coordinate
conversion it identifies. We are now in a position to examine the structure of this FrameSet.

Take our earlier example (§12.1) of converting between the celestial coordinate systems repre-
sented by two SkyFrames:

INCLUDE ’AST_PAR’
INTEGER SKYFRAME1, SKYFRAME2, STATUS

STATUS = 0

SKYFRAME1 = AST_SKYFRAME (’System=FK4-NO-E, Epoch=B1958, Equinox=B1960’, STATUS)
SKYFRAME2 = AST_SKYFRAME(’System=Ecliptic, Equinox=J2010.5°, STATUS)

CVT = AST_CONVERT(SKYFRAME1, SKYFRAME2, ’> ’, STATUS)

This will produce a pointer, CVT, to the FrameSet shown in Figure 12. As can be seen, this

4 FrameSet

SkyFrame
1 Mapping

Current Frame

Base Frame

Figure 12: The FrameSet produced when AST_CONVERT is used to convert between the
coordinate systems represented by two SkyFrames. The source SkyFrame becomes the base
Frame, while the destination SkyFrame becomes the current Frame. The Mapping between
them implements the required conversion.

FrameSet contains just two Frames. The source Frame supplied to AST_CONVERT becomes its
base Frame, while the destination Frame becomes its current Frame. (The FrameSet, of course,
simply holds pointers to these Frames, rather than making copies.) The Mapping which relates
the base Frame to the current Frame is the one which implements the required conversion.

As we noted earlier (§12.1), the FrameSet returned by AST_CONVERT may be used both as a
Mapping and as a Frame to perform most of the functions you are likely to need. However, the

116 14 HIGHER LEVEL OPERATIONS ON FRAMESETS

Mapping may be extracted for use on its own if necessary, using AST_GETMAPPING (§13.7),
for example:

INTEGER MAPPING

MAPPING = AST_GETMAPPING(CVT, AST__BASE, AST__CURRENT, STATUS)

14.2 Converting between FrameSet Coordinate Systems

We now consider the process of converting between the coordinate systems represented by two
FrameSets. This is a most important operation, as a subsequent example (§14.3) will show,
and is illustrated in Figure 13. Recalling (§13.8) that a FrameSet will behave like its current
Frame when necessary, conversion between two FrameSets is performed using AST_CONVERT
(§12.1), but supplying pointers to FrameSets instead of Frames. The effect of this is to convert
between the coordinate systems represented by the current Frames of each FrameSet:

INTEGER FRAMESETA, FRAMESETB

CVT = AST_CONVERT(FRAMESETA, FRAMESETB, °’SKY’, STATUS)

When using FrameSets, we are presented with considerably more conversion options than when
using Frames alone. This is because each current Frame is related to all the other Frames in
its respective FrameSet. Therefore, if we can establish a link between any pair of Frames, one
from each FrameSet, we can form a complete conversion path between the two current Frames
(Figure 13).

This expanded range of options is, of course, precisely the intention. By connecting Frames
together within a FrameSet, we have extended the range of coordinate systems that can be
reached from any one of them. We are therefore no longer restricted to converting between
Frames with the same Domain value (§7.12), but can go via a range of intermediate coordinate
systems in order to make the connection we require. Transformation between different domains
has therefore become possible because, in assembling the FrameSets, we provided the additional
information needed to inter-relate them.

It is important to appreciate, however, that the choice of “missing link” is crucial in determining
the conversion that results. Although each FrameSet may be perfectly self-consistent internally,
this does not mean that all conversion paths through the combined network of Mappings are
equivalent. Quite the contrary in fact: everything depends on where the inter-connecting link
between the two FrameSets is made. In practice, there may be a large number of possible
pairings of Frames and hence of possible links. Other factors must therefore be used to restrict
the choice. These are:

1. Not every possible pairing of Frames is legitimate. For example, you cannot convert
directly between a basic Frame and a SkyFrame which belong to different classes, so such
pairings will be ignored.

14.2 Converting between FrameSet Coordinate Systems 117

Frame 1 Base Frame
/ *Mappmg
@

Mappmg

Source

FrameSet A Current Frame

/ /- Base Frame
Missing o U
Link
Jo pNES
Frame 2
Mappmg
/ Current Frame FrameSet B

Destination

Figure 13: Conversion between two FrameSets is performed by establishing a link between a
pair of Frames, one from each FrameSet. If conversion between these two Frames is possible,
then a route for converting between the current Frames of both FrameSets can also be found. In
practice, there may be many ways of pairing Frames to find the “missing link”, so the Frames’
Domain attribute may be used to narrow the choice.

118 14 HIGHER LEVEL OPERATIONS ON FRAMESETS

2. In a similar way, you cannot convert directly between Frames with different Domain values
(§7.12). If the Domain attribute is used consistently (typically only one Frame in each
FrameSet will have a particular Domain value), then this further restricts the choice.

3. The third argument of AST_CONVERT may then be used to specify explicitly which
Domain value the paired Frames should have. You may also supply a comma-separated
list of preferences here (see below).

4. If the above steps fail to uniquely identify the link, then the first suitable pairing of Frames
is used, so that any ambiguity is resolved by the order in which Frames are considered for
pairing (see the description of the AST_CONVERT function in Appendix B for details of
the search order).2"

In the example above we supplied the string “SKY” as the third argument of AST_CONVERT.
This constitutes a request that a pair of Frames with the Domain value SKY (i.e. representing
celestial coordinate systems) should be used to inter-relate the two FrameSets. Note that this
does not specify which celestial coordinate system to use, but is a general request that the two
FrameSets be inter-related using coordinates on the celestial sphere.

Of course, it may be that this request cannot be met because there may not be a celestial coor-
dinate system in both FrameSets. If this is likely to happen, we can supply a list of preferences,
or a domain search path, as the third argument to AST_CONVERT, such as the following:

CVT = AST_CONVERT(FRAMESETA, FRAMESETB, ’SKY,PIXEL,GRID,’, STATUS)

Now, if the two FrameSets cannot be inter-related using the SKY domain, AST_CONVERT
will attempt to use the PIXEL domain instead. If this also fails, it will try the GRID domain.
A blank field in the domain search path (here indicated by the final comma) allows any Domain
value to be used. This can be employed as a last resort when all else has failed.

If astConvert succeeds in identifying a conversion, it will return a pointer to a FrameSet (§14.1)
in which the source and destination Frames are inter-connected by the required Mapping. In
this case, of course, these Frames will be the current Frames of the two FrameSets, but in all
other respects the returned FrameSet is the same as when converting between Frames.

Very importantly, however, AST_CONVERT may modify the FrameSets you are converting
between. It does this, in order to indicate which pairing of Frames was used to inter-relate
them, by changing the Base attribute for each FrameSet so that the Frame used in the pairing
becomes its base Frame (§13.4).

Finally, note that AST_CONVERT may also be used to convert between a FrameSet and a
Frame, or vice versa. If a pointer to a Frame is supplied for either the first or second argument,
it will behave like a FrameSet containing only a single Frame.

14.3 Example—Registering Two Images

Consider two images which have been calibrated by attaching FrameSets to them, such that the
base Frame of each FrameSet corresponds to the raw data grid coordinates of each image (the

20Tf you find that how this ambiguity is resolved actually makes a difference to the conversion that results, then
you have probably constructed a FrameSet which lacks internal self-consistency. For example, you might have
two Frames representing indistinguishable coordinate systems but inter-related by a non-null Mapping.

14.3 Example—Registering Two Images 119

GRID domain of §7.13). Suppose, also, that these FrameSets contain an unknown number of
other Frames, representing alternative world coordinate systems. What we wish to do is register
these two images, such that we can transform from a position in the data grid of one into the
corresponding position in the data grid of the other. This is a very practical example because
images will typically be calibrated using FrameSets in precisely this way.

The first step will probably involve making a copy of both FrameSets (using AST_COPY—
§4.12), since we will be modifying them. Let “frameseta” and “framesetb” be pointers to these
copies. Since we want to convert between the base Frames of these FrameSets (i.e. their data grid
coordinates), the next step is to make these Frames current. This is simply done by inverting
both FrameSets, which interchanges their base and current Frames. astInvert will perform this
task:

CALL AST_INVERT(FRAMESETA, STATUS)
CALL AST_INVERT(FRAMESETB, STATUS)

To identify the required conversion, we now use AST_CONVERT, supplying a suitable domain
search path with which we would like our two images to be registered:

CVT = AST_CONVERT(FRAMESETA, FRAMESETB, ’SKY,PIXEL,GRID’, STATUS)
IF (CVT .EQ. AST__NULL) THEN
<no conversion was possible>
ELSE
<conversion was possible>
END IF

The effects of this are:

1. AST_CONVERT first attempts to register the two images on the celestial sphere (i.e. using
the SKY domain). To do this, it searches for a celestial coordinate system, although not
necessarily the same one, attached to each image. If it finds a suitable pair of coordinate
systems, it then registers the images by matching corresponding positions on the sky.

2. If this fails, AST_CONVERT next tries to match positions in the PIXEL domain (§7.12).
If it succeeds, the two images will then be registered so that their corresponding pixel
positions correspond. If the PIXEL domain is offset from the data grid (as typically
happens in data reduction systems which implement a “pixel origin”), then this will be
correctly accounted for.

3. If this also fails, the GRID domain is finally used. This will result in image registration by
matching corresponding points in the data grids used by both images. This means they
will be aligned so that the first element their data arrays correspond.

4. If all of the above fail, AST_CONVERT will return the value AST__NULL. Otherwise a
pointer to a FrameSet will be returned.

The resulting CVT FrameSet may then be used directly (§12.1) to convert between positions
in the data grid of the first image and corresponding positions in the data grid of the second
image.

120 14 HIGHER LEVEL OPERATIONS ON FRAMESETS

To determine which domain was used to achieve registration, we can use the fact that the Base
attribute of each FrameSet is set by AST_CONVERT to indicate which intermediate Frames
were used. We can therefore simply invert either FrameSet (to make its base Frame become the
current one) and then enquire the Domain value:

CHARACTER * (20) DOMAIN

CALL AST_INVERT(FRAMESETA, STATUS)
DOMAIN = AST_GETC(FRAMESETA, ’Domain’, STATUS)

If conversion was successful, the result will be one of the strings “SKY”, “PIXEL” or “GRID”.

14.4 Re-Defining a FrameSet Coordinate System

As discussed earlier (§13.4), an important application of a FrameSet is to allow coordinate
system information to be attached to entities such as images in order to calibrate them. In
addition, one of the main objectives of AST is to simplify the propagation of such information
through successive stages of data processing, so that it remains consistent with the associated
image data.

In such a situation, the FrameSet’s base Frame would correspond with the image’s data grid
coordinates and its other Frames (if any) with the various alternative world coordinate sys-
tems associated with the image. If the data processing being performed does not change the
relationship between the image’s data grid coordinates and any of the associated world coordi-
nate systems, then propagation of the WCS information is straightforward and simply involves
copying the FrameSet associated with the image.

If any of these relationships change, however, then corresponding changes must be made to the
way Frames within the FrameSet are inter-related. By far the most common case occurs when
the image undergoes some geometrical transformation resulting in “re-gridding” on to another
data grid, but the same principles can be applied to any re-definition of a coordinate system.

To pursue the re-gridding example, we would need to modify our FrameSet to account for the
fact that the image’s data grid coordinate system (corresponding to the FrameSet’s base Frame)
has changed. Looking at the steps needed in detail, we might proceed as follows:

1. Create a Mapping which represents the relationship between the original data grid coor-
dinate system and the new one.

2. Obtain a Frame to represent the new data grid coordinate system (we could re-use the
original base Frame here, using AST_GETFRAME to obtain a pointer to it).

3. Add the new Frame to the FrameSet, related to the original base Frame by the new
Mapping. This Frame now represents the new data grid coordinate system and is correctly
related to all the other Frames present.?!

21This is because any transformation to or from this new Frame must go via the base Frame representing the
original data grid coordinate system, which we assume was correctly related to all the other Frames present.

14.5 Example—Binning an Image 121

4. Remove the original base Frame (representing the old data grid coordinate system).

5. Make the new Frame the base Frame and restore the original current Frame.

The effect of these steps is to change the relationship between the base Frame and all the other
Frames present. It is as if a new Mapping has been interposed between the Frame we want to
alter and all the other Frames within the FrameSet (Figure 14).

Mapping Mapping

{r

FrameSet @ Base Frame
Current Frame

Figure 14: The effect of AST_REMAPFRAME is to interpose a Mapping between a nominated
Frame within a FrameSet and the remaining contents of the FrameSet. This effectively “re-
defines” the coordinate system represented by the affected Frame. It may be used to compensate
(say) for geometrical changes made to an associated image. The inter-relationships between all
the other Frames within the FrameSet remain unchanged.

Performing the steps above is rather lengthy, however, so the AST_REMAPFRAME function
is provided to perform all of these operations in one go. A practical example of its use is given
below (§14.5).

14.5 Example—Binning an Image

As an example of using AST_REMAPFRAME, consider a case where the pixels of a 2-dimensional
image have been binned 2x2, so as to reduce the image size by a factor of two in each dimension.

We must now modify the associated FrameSet to reflect this change to the image. Much the

same process would be needed for any other geometrical change the image might undergo.

We first set up a Mapping (a WinMap in this case) which relates the data grid coordinates in
the original image to those in the new one:

INTEGER WINMAP

DOUBLE PRECISION INAC 2), INB(2), OUTAC 2), OUTB(2)
DATA INA / 0.5DO, 0.5D0 /

DATA INB / 2.5D0, 2.5D0 /

DATA OUTA / 0.5DO, 0.5D0 /

122 14 HIGHER LEVEL OPERATIONS ON FRAMESETS

DATA OUTB / 1.5D0, 1.5D0 /

WINMAP = AST_WINMAP(2, INA, INB, OUTA, OUTB, °’ °’, STATUS)

Here, we have simply set up arrays containing the data grid coordinates of the bottom left
and top right corners of the first element in the output image (OUTA and OUTB) and the
corresponding coordinates in the input image (INA and INB). AST_WINMAP then creates a
WinMap which performs the required transformation. We do not need to know the size of the
image.

We can then pass this WinMap to AST_REMAPFRAME. This modifies the relationship be-
tween our FrameSet’s base Frame and the other Frames in the FrameSet, so that the base Frame
represents the data grid coordinate system of the new image rather than the old one:

INTEGER FRAMESET

CALL AST_REMAPFRAME(FRAMESET, AST__BASE, WINMAP, STATUS)

Any other coordinate systems described by the FrameSet, no matter how many of these there
might be, are now correctly associated with the new image.

14.6 Maintaining the Integrity of FrameSets

When constructing a FrameSet, you are provided with a framework into which you can place
any combination of Frames and Mappings that you wish. There are relatively few constraints
on this process and no checks are performed to see whether the FrameSet you construct makes
physical sense. It is quite possible, for example, to construct a FrameSet containing two identical
SkyFrames which are inter-related by a non-unit Mapping. AST will not object if you do this,
but it makes no sense, because applying a non-unit Mapping to any set of celestial coordinates
cannot yield positions that are still in the original coordinate system. If you use such a Frame-
Set to perform coordinate conversions, you are likely to get unpredictable results because the
information in the FrameSet is corrupt.

It is, of course, your responsibility as a programmer to ensure the validity of any information
which you insert into a FrameSet. Normally, this is straightforward and simply consists of
formulating your problem correctly (a diagram can often help to clarify how coordinate systems
are inter-related) and writing the appropriate bug-free code to construct the FrameSet. However,
once you start to modify an existing FrameSet, there are new opportunities for corrupting it!

Consider, for example, a FrameSet whose current Frame is a SkyFrame. We can set a new value
for this SkyFrame’s Equinox attribute simply by using AST_SET on the FrameSet, as follows:

CALL AST_SET(FRAMESET, ’Equinox=J2010°, STATUS)

14.6 Maintaining the Integrity of FrameSets 123

The effect of this will be to change the celestial coordinate system which the current Frame
represents. You can see, however, that this has the potential to make the FrameSet corrupt
unless corresponding changes are also made to the Mapping which relates this SkyFrame to the
other Frames within the FrameSet. In fact, it is a general rule that any change to a FrameSet
which affects its current Frame can potentially require corresponding changes to the FrameSet’s
Mappings in order to maintain its overall integrity.

Fortunately, once you have stored valid information in a FrameSet, AST will look after these de-
tails for you automatically, so that the FrameSet’s integrity is maintained. In the example above,
it would do this by appropriately re-mapping the current Frame (as if AST_REMAPFRAME
had been used—§14.4) in response to the use of AST_SET. One way of illustrating this process
is as follows:

INTEGER SKYFRAME

SKYFRAME = AST_SKYFRAME(’ °’, STATUS)
FRAMESET = AST_FRAMESET(SKYFRAME, STATUS)

CALL AST_ADDFRAME(FRAMESET, 1, AST_UNITMAP(2, ’> °’, STATUS)
: SKYFRAME, STATUS)

This constructs a trivial FrameSet whose base and current Frames are both the same SkyFrame
connected by a UnitMap. You can think of this as a “pipe” connecting two coordinate systems.
At present, these two systems represent identical ICRS coordinates, so the FrameSet implements
a unit Mapping. We can change the coordinate system on the current end of this pipe as follows:

CALL AST_SET(FRAMESET, ’System=Ecliptic, Equinox=J2010°, STATUS)

and the Mapping which the FrameSet implements would change accordingly. To change the
coordinate system on the base end of the pipe, we might use:

CALL AST_INVERT(FRAMESET)
CALL AST_SET(FRAMESET, ’System=Galactic’, STATUS)
CALL AST_INVERT(FRAMESET)

The FrameSet would then convert between galactic and ecliptic coordinates.

Note that AST_SET is not the only function which has this effect: AST_CLEAR behaves
similarly, as also does AST_PERMAXES (§7.9). If you need to circumvent this mechanism for
any reason, this can be done by going behind the scenes and obtaining a pointer directly to the
Frame you wish to modify. Consider the following, for example:

SKYFRAME = AST_GETFRAME(FRAMESET, AST__CURRENT, STATUS)
CALL AST_SET(SKYFRAME, ’Equinox=J2010’, STATUS)
CALL AST_ANNUL(SKYFRAME, STATUS)

Here, AST_SET is applied to the SkyFrame pointer rather than the FrameSet pointer, so the
usual checks on FrameSet integrity do not occur. The SkyFrame’s Equinox attribute will there-
fore be modified without any corresponding change to the FrameSet’s Mappings. In this case
you must take responsibility yourself for maintaining the FrameSet’s integrity, perhaps through
appropriate use of AST_REMAPFRAME.

124 14 HIGHER LEVEL OPERATIONS ON FRAMESETS

14.7 Merging FrameSets

As well as adding individual Frames to a FrameSet (§13.3), it is also possible to add complete
sets of inter-related Frames which are contained within another FrameSet. This, of course,
corresponds to the process of merging two FrameSets (Figure 15).

/

Mappmg

Base Frame

Frame 3

FrameSet A

Mappmg

New
Mapping

L

Old Current Frame

Frame 1 Old Base Frame

Mappmg
@

Mappmg

—_—— e e -

Figure 15: Two FrameSets in the process of being merged using AST_ADDFRAME. FrameSet B
is being added to FrameSet A by supplying a new Mapping which inter-relates a nominated
Frame in A (here number 1) and the current Frame of B. In the merged FrameSet, the Frames
contributed by B will be re-numbered to become Frames 4, 5 and 6. The base Frame will remain
unchanged, but the current Frame of B becomes the new current Frame. Note that FrameSet B
itself is not altered by this process.

This process is performed by adding one FrameSet to another using AST_ADDFRAME, in much
the same manner as when adding a new Frame to an existing FrameSet (§13.3). It is simply
a matter of providing a FrameSet pointer, instead of a Frame pointer, for the 4th argument.
In performing the merger you must, as usual, supply a Mapping, but in this case the Mapping
should relate the current Frame of the FrameSet being added to one of the Frames already

14.7 Merging FrameSets 125

present. For example, you might perform the merger shown in Figure 15 as follows:

INTEGER MAPPING

CALL AST_ADDFRAME(FRAMESETA, 1, MAPPING, FRAMESETB, STATUS)

The Frames acquired by FRAMESETA from the FrameSet being added (FRAMESETB) are
re-numbered so that they retain their original order and follow on consecutively after the Frames
that were already present, whose indices remain unchanged. The base Frame of FRAMESETA
remains unchanged, but the current Frame of FRAMESETB becomes its new current Frame.
All the inter-relationships between Frames in both FrameSets remain in place and are preserved
in the merged FrameSet.

Note that while this process modifies the first FrameSet (FRAMESETA), it leaves the original
contents of the one being added (FRAMESETB) unchanged.

126 14 HIGHER LEVEL OPERATIONS ON FRAMESETS

127

15 Saving and Restoring Objects (Channels)

Facilities are provided by the AST library for performing input and output (I/O) with any kind
of Object. This means it is possible to write any Object into various external representations
for storage, and then to read these representations back in, so as to restore the original Object.
Typically, an Object would be written by one program and read back in by another.

We refer to “external representations” in the plural because AST is designed to function inde-
pendently of any particular data storage system. This means that Objects may need converting
into a number of different external representations in order to be compatible with (say) the
astronomical data storage system in which they will reside.

In this section, we discuss the basic I/O facilities which support external representations based
on a textual format referred to as the AST “native format”. These are implemented using a
new kind of Object—a Channel. We will examine later how to use other representations, based
on an XML format or on the use of FITS headers, for storing Objects. These are implemented
using more specialised forms of Channel called XmlChan (§18) and FitsChan (§16).

15.1 The Channel Model

The best way to start thinking about a Channel is like a Fortran I/O unit (also represented by
an integer, as it happens) and to think of the process of creating a Channel as the combined
process of allocating a unit number and attaching it to a file by opening the file on that unit.
Subsequently, you can read and write Objects wia the Channel.

This analogy is not quite perfect, however, because a Channel has, in principle, two “files”
attached to it. One is used when reading, and the other when writing. These are termed the
Channel’s source and sink respectively. In practice, the source and sink may both be the same,
in which case the analogy with the Fortran I/O unit is correct, but this need not always be so.
It is not necessarily so with the basic Channel, as we will now see (§15.2).

15.2 Creating a Channel

The process of creating a Channel is straightforward. As you might expect, it uses the construc-
tor function AST_CHANNEL:

INCLUDE ’AST_PAR’
INTEGER CHANNEL, STATUS

STATUS = 0

CHANNEL = AST_CHANNEL(AST_NULL, AST_NULL, °’> °’, STATUS)

The first two arguments to AST_CHANNEL specify the external source and sink that the
Channel is to use. There arguments are the names of Fortran subroutines and we will examine
their use in more detail later (§15.13 and §15.14).

128 15 SAVING AND RESTORING OBJECTS (CHANNELS)

In this very simple example we have supplied the name of the null routine AST_NULL?? for
both the source and sink routines. This requests the default behaviour, which means that
textual input will be read from the program’s standard input stream (typically, this means your
keyboard) while textual output will go to the standard output stream (typically appearing on
your screen). On UNIX systems, of course, either of these streams can easily be redirected to
files.

15.3 Writing Objects to a Channel

The process of saving Objects is very straightforward. You can simply write any Object to a
Channel using the AST_WRITE function, as follows:

INTEGER NOBJ, OBJECT

NOBJ = AST_WRITE(CHANNEL, OBJECT, STATUS)

The effect of this will be to produce a textual description of the Object which will appear, by
default, on your program’s standard output stream. Any class of Object may be converted into
text in this way.

AST_WRITE returns a count of the number of Objects written. Usually, this will be one,
unless the Object supplied cannot be represented. With a basic Channel all Objects can be
represented, so a value of one will always be returned unless there has been an error. We will
see later, however, that more specialised forms of Channel may impose restrictions on the kind
of Object you can write (§17.2). In such cases, AST_WRITE may return zero to indicate that
the Object was not acceptable.

15.4 Reading Objects from a Channel

Before discussing the format of the output produced above (§15.3), let us consider how to read
it back, so as to reconstruct the original Object. Naturally, we would first need to save the
output in a file. We can do that either by using the SinkFile attribute, or (on UNIX systems),
by redirecting standard output to a file using a shell command like:

programl >file

Within a subsequent program, we can read this Object back in by using the AST_READ func-
tion, having first created a suitable Channel:

OBJECT = AST_READ(CHANNEL, STATUS)

22Note that AST_NULL (one underscore) is a routine name and is distinct from AST__NULL (two underscores)
which is a null Object pointer. Since we are passing the name of one routine to another routine, AST_NULL would
normally have to appear in a Fortran EXTERNAL statement. In this example, however, a suitable statement is
already present in the AST_PAR include file.

15.5 Saving and Restoring Multiple Objects 129

By default, this function will read from the standard input stream (the default source for a basic
Channel), so we would need to ensure that our second program reads its input from the file in
which the Object description is stored. On UNIX systems, we could again use a shell redirection
command such as:

program2 <file

Alternatively, we could have assigned a value to the SinkFile attribute before invoking AST_READ.

15.5 Saving and Restoring Multiple Objects

I/0 operations performed on a basic Channel are sequential. This means that if you write more
than one Object to a Channel, each new Object’s textual description is simply appended to the
previous one. You can store any number of Objects in this way, subject only to the storage
space you have available.

After you read an Object back from a basic Channel, the Channel is “positioned” at the end
of that Object’s textual description. If you then perform another read, you will read the next
Object’s textual description and therefore retrieve the next Object. This process may be re-
peated to read each Object in turn. When there are no more Objects to be read, AST_READ
will return the value AST__NULL to indicate an end-of-file.

15.6 Validating Input

The pointer returned by AST_READ (§15.4) could identify any class of Object—this is deter-
mined entirely by the external data being read. If it is necessary to test for a particular class (say
a Frame), this may be done as follows using the appropriate member of the AST_ISA<CLASS>
family of functions:

LOGICAL OK

OK = AST_ISAFRAME(OBJECT, STATUS)

Note, however, that this will accept any Frame, so would be equally happy with a basic Frame
or a SkyFrame. An alternative validation strategy would be to obtain the value of the Object’s
Class attribute and then test this character string, as follows:

0K = AST_GETC(OBJECT, ’Class’, STATUS) .EQ. ’Frame’

This would only accept a basic Frame and would reject a SkyFrame.

130 15 SAVING AND RESTORING OBJECTS (CHANNELS)

15.7 Storing an ID String with an Object

Occasionally, you may want to store a number of Objects and later retrieve them and use each
for a different purpose. If the Objects are of the same class, you cannot use the Class attribute
to distinguish them when you read them back (c.f. §15.6). Although relying on the order in
which they are stored is a possible solution, this becomes complicated if some of the Objects
are optional and may not always be present. It also makes extending your data format in future
more difficult.

To help with this, every AST Object has an ID attribute and an Ident attribute, both of which
allows you, in effect, to attach a textual identification label to it. You simply set the ID or Ident
attribute before writing the Object:

CALL AST_SET(OBJECT, ’ID=Calibration’, STATUS)
NOBJ = AST_WRITE(CHANNEL, OBJECT, STATUS)

You can then test its value after you read the Object back:

OBJECT = AST_READ(CHANNEL, STATUS)

IF (AST_GETC(OBJECT, ’ID’, STATUS) .EQ. ’Calibration’) THEN
<the Calibration Object has been read>

ELSE
<some other Object has been read>

END IF

The only difference between the ID and Ident attributes is that the ID attribute is unique to a
particular Object and is lost if, for example, you make a copy of the Object. The Ident attrubute,
on the other hand, is transferred to the new Object when a copy is made. Consequently, it is
safest to set the value of the ID attribute immediately before you perform the write.

15.8 The Textual Output Format

Let us now examine the format of the textual output produced by writing an Object to a basic
Channel (§15.3). To give a concrete example, suppose the Object in question is a SkyFrame,
written out as follows:

INTEGER SKYFRAME

NOBJ = AST_WRITE(CHANNEL, SKYFRAME, STATUS)

The output should then look like the following:

Begin SkyFrame # Description of celestial coordinate system

Title = "FK4 Equatorial Coordinates, no E-terms, Mean Equinox B1950.0, Epoch B1958.0"

Naxes = 2 # Number of coordinate axes
Domain = "SKY" # Coordinate system domain
Lbll = "Right Ascension" # Label for axis 1

Title

15.8 The Textual Output Format 131

Lbl2 = "Declination" # Label for axis 2

Unil = "hh:mm:ss.s" # Units for axis 1

Uni2 = "ddd:mm:ss" # Units for axis 2

Dirl = 0 # Plot axis 1 in reverse direction (hint)
Ax1 = # Axis number 1

Begin SkyAxis # Celestial coordinate axis
End SkyAxis

Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis

IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
Egnox = 1950 # Besselian epoch of mean equinox
End SkyFrame

You will notice that this output is designed both for a human reader, in that it is formatted,
and also to be read back by a computer in order to reconstruct the SkyFrame. In fact, this is
precisely the way that AST_SHOW works (§4.4), this routine being roughly equivalent to the
following use of a Channel:

CHANNEL = AST_CHANNEL(AST_NULL, AST_NULL, °’ °’, STATUS)
NOBJ = AST_WRITE(CHANNEL, OBJECT, STATUS)
CALL AST_ANNUL(CHANNEL, STATUS)

Some lines of the output start with a “#” comment character, which turns the rest of the line
into a comment. These lines will be ignored when read back in by AST_READ. They typically
contain default values, or values that can be derived in some way from the other data present,
so that they do not actually need to be stored in order to reconstruct the original Object. They
are provided purely for human information. The same comment character is also used to append
explanatory comments to most output lines.

It is not sensible to attempt a complete description of this output format because every class
of Object is potentially different and each can define how its own data should be represented.
However, there are some basic rules, which mean that the following common features will usually
be present:

1. Each Object is delimited by matching “Begin” and “End” lines, which also identify the
class of Object involved.

2. Within each Object description, data values are represented by a simple “keyword = value”
syntax, with one value to a line.

3. Lines beginning “IsA” are used to mark the divisions between data belonging to different
levels in the class hierarchy (Appendix A). Thus, “IsA Frame” marks the end of data
associated with the Frame class and the start of data associated with some derived class
(a SkyFrame in the above example). “IsA” lines may be omitted if associated data values
are absent and no confusion arises.

4. Objects may contain other Objects as data. This is indicated by an absent value, with the
description of the data Object following on subsequent lines.

132 15 SAVING AND RESTORING OBJECTS (CHANNELS)

5. Indentation is used to clarify the overall structure.

Beyond these general principles, the best guide to what a particular line of output represents
will generally be the comment which accompanies it together with a general knowledge of the
class of Object being described.

15.9 Controlling the Amount of Output

It is not always necessary for the output from AST_WRITE (§15.3) to be human-readable, so
a Channel has attributes that allow the amount of detail in the output to be controlled.

The first of these is the integer attribute Full, which controls the extent to which optional,
commented out, output lines are produced. By default, Full is zero, and this results in the
standard style of output (§15.8) where default values that may be helpful to humans are included.
To suppress these optional lines, Full should be set to —1. This is most conveniently done when
the Channel is created, so that:

CHANNEL = AST_CHANNEL(AST_NULL, AST_NULL, ’Full=-1’, STATUS)
NOBJ = AST_WRITE(CHANNEL, SKYFRAME, STATUS)
CALL AST_ANNUL(CHANNEL, STATUS)

would result in output containing only the essential information, such as:

Begin SkyFrame # Description of celestial coordinate system
Naxes = 2 # Number of coordinate axes
Ax1l = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
End SkyFrame

In contrast, setting Full to +1 will result in additional output lines which will reveal every last
detail of the Object’s construction. Often this will be rather more than you want, especially
for more complex Objects, but it can sometimes help when debugging programs. This is how a
SkyFrame appears at this level of detail:

Begin SkyFrame # Description of celestial coordinate system
RefCnt = 1 # Count of active Object pointers
Nobj = 1 # Count of active Objects in same class
IsA Object # Astrometry Object
Nin = 2 # Number of input coordinates
Nout = 2 # Number of output coordinates
Invert = 0 # Mapping not inverted
Fwd = 1 # Forward transformation defined

H H H

15.9 Controlling the Amount of Output 133

Inv =1 # Inverse transformation defined
Report = 0 # Don’t report coordinate transformations
IsA Mapping # Mapping between coordinate systems
Title = "FK4 Equatorial Coordinates, no E-terms, Mean Equinox B1950.0, Epoch B1958.0" # Title
Naxes = 2 # Number of coordinate axes
Domain = "SKY" # Coordinate system domain
Lbll = "Right Ascension" # Label for axis 1
Lbl2 = "Declination" # Label for axis 2
Syml = "RA" # Symbol for axis 1
Sym2 = "Dec" # Symbol for axis 2
Unil = "hh:mm:ss.s" # Units for axis 1
Uni2 = "ddd:mm:ss" # Units for axis 2
Digl = 7 # Individual precision for axis 1
Dig2 = 7 # Individual precision for axis 2
Digits = 7 # Default formatting precision
Fmtl = "hms.1" # Format specifier for axis 1

+*

Fmt2 = "dms" # Format specifier for axis 2
Dirl = 0 # Plot axis 1 in reverse direction (hint)
Dir2 = 1 # Plot axis 2 in conventional direction (hint)

Presrv = 0 # Don’t preserve target axes
Permut = 1 # Axes may be permuted to match
MinAx = 2 # Minimum number of axes to match
MaxAx = 2 # Maximum number of axes to match
MchEnd = O # Match initial target axes

Prml = 1 # Axis 1 not permuted

Prm2 = 2 # Axis 2 not permuted

H OH H HH HEHHFHHHEHHEHHHEHHEHRHER

Ax1l = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
RefCnt = 1 # Count of active Object pointers
Nobj = 2 # Count of active Objects in same class
IsA Object # Astrometry Object
Label = "Angle on Sky" # Axis Label
Symbol = "delta" # Axis symbol
Unit = "ddd:mm:ss" # Axis units
Digits = 7 # Default formatting precision
Format = "dms" # Format specifier
Dirn = 1 # Plot in conventional direction
IsA Axis # Coordinate axis
Format = "dms" # Format specifier
IsLat = 0 # Longitude axis (not latitude)
AsTime = 0 # Display values as angles (not times)
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
RefCnt = 1 # Count of active Object pointers
Nobj = 2 # Count of active Objects in same class
IsA Object # Astrometry Object
Label = "Angle on Sky" # Axis Label
Symbol = "delta" # Axis symbol
Unit = "ddd:mm:ss" # Axis units
Digits = 7 # Default formatting precision
Format "dms" # Format specifier
#

Dirn = 1 # Plot in conventional direction
IsA Axis # Coordinate axis

134 15 SAVING AND RESTORING OBJECTS (CHANNELS)

Format = "dms" # Format specifier
IsLat = 0 # Longitude axis (not latitude)
AsTime = 0 # Display values as angles (not times)

End SkyAxis
IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
Egnox = 1950 # Besselian epoch of mean equinox
End SkyFrame

15.10 Controlling Commenting

Another way of controlling output from a Channel is via the boolean (integer) Comment at-
tribute, which controls whether comments are appended to describe the purpose of each value.
Comment has the value 1 by default but, if set to zero, will suppress these comments. This is
normally appropriate only if you wish to minimise the amount of output, for example:

CALL AST_SET(CHANNEL, ’Full=-1, Comment=0’, STATUS)
NOBJ = AST_WRITE(CHANNEL, SKYFRAME, STATUS)

might result in the following more compact output:

Begin SkyFrame
Naxes = 2
Ax1 =
Begin SkyAxis
End SkyAxis
Ax2 =
Begin SkyAxis
End SkyAxis

IsA Frame
System = "FK4-NO-E"
Epoch = 1958

End SkyFrame

15.11 Editing Textual Output

The safest advice about editing the textual output from AST_WRITE (or AST_SHOW) is
“don’t!”—unless you know what you are doing.

Having given that warning, however, it is sometimes possible to make changes to the text, or
even to write entire Object descriptions from scratch, and to read the results back in to construct
new Objects. Normally, simple changes to numerical values are safest, but be aware that this
is a back door method of creating Objects, so you are on your own! There are a number of
potential pitfalls. In particular:

e AST_READ is intended for retrieving data written by AST_WRITE and not for read-
ing data input by humans. As such, the data validation provided is very limited and is
certainly not foolproof. This makes it quite easy to construct Objects that are internally

15.12 Mixing Objects with other Text 135

inconsistent by this means. In contrast, the normal programming interface incorporates
numerous checks designed to make it impossible to construct invalid Objects. You should
not necessarily think you have found a bug if your changes to an Object’s textual descrip-
tion fail to produce the results you expected!

e In many instances the names associated with values in textual output will correspond with
Object attributes. Sometimes, however, these names may differ from the attribute name.
This is mainly because of length restrictions imposed by other common external formats,
such as FITS headers. Some of the names used do not correspond with attributes at all.

e [t is safest to change single numerical or string values. Beware of changing the size or
shape of Objects (e.g. the number of axes in a Frame). Often, these values must match
others stored elsewhere within the Object and changing them in a haphazard fashion will
not produce useful results.

e Be wary about un-commenting default values. Sometimes this will work, but often these
values are derived from other Objects stored more deeply in the structure and the proper
place to insert a new value is not where the default itself appears.

15.12 Mixing Objects with other Text

By default, when you use AST_READ to read from a basic Channel (§15.4), it is assumed
that you are reading a stream of text containing only AST Objects, which follow each other
end-to-end. If any extraneous input data are encountered which do not appear to form part of
the textual description of an Object, then an error will result. In particular, the first input line
must identify the start of an Object description, so you cannot start reading half way through
an Object.

Sometimes, however, you may want to store AST Object descriptions intermixed with other
textual data. You can do this by setting the Channel’s boolean (integer) Skip attribute to 1.
This will cause every read to skip over extraneous data until the start of a new AST Object
description, if any, is found. So long as your other data do not mimic the appearance of an AST
Object description, the two sets of data can co-exist.

For example, by setting Skip to 1, the following complete Fortran program will read all the
AST Objects whose descriptions appear in the source of this document, ignoring the other text.
AST_SHOW is used to display those found:

INCLUDE ’AST_PAR’
INTEGER CHANNEL, OBJECT, STATUS

STATUS = 0
CHANNEL = AST_CHANNEL(AST_NULL, AST_NULL, °’Skip=1’, STATUS)
1 OBJECT = AST_READ(CHANNEL, STATUS)
IF (OBJECT .NE. AST__NULL) THEN
CALL AST_SHOW(OBJECT, STATUS)
CALL AST_ANNUL(OBJECT, STATUS)
GO TO 1
END IF
CALL AST_ANNUL(CHANNEL, STATUS)
END

136 15 SAVING AND RESTORING OBJECTS (CHANNELS)

15.13 Reading Objects from Files

Thus far, we have only considered the default behaviour of a Channel in reading and writing
Objects through a program’s standard input and output streams. We will now consider how to
access Objects stored in files more directly.

The simple approach is to use the SinkFile and SourceFile attributes of the Channel. For
instance, the following will read a pair of Objects from a text file called “fred.txt”:

CALL AST_SET(CHANNEL, ’SourceFile=fred.txt’, STATUS)
0BJ1 = AST_READ(CHANNEL, STATUS)

0BJ2 = AST_READ(CHANNEL, STATUS)

CALL AST_CLEAR(CHANNEL, ’SourceFile’, STATUS)

Note, the act of clearing the attribute tells AST that no more Objects are to be read from the
file and so the file is then closed. If the attribute is not cleared, the file will remain open and
further Objects can be read from it. The file will always be closed when the Channel is deleted.

This simple approach will normally be sufficient. However, because the AST library is designed
to be used from more than one language, it has to be a little careful about reading and writing
to files. This is due to incompatibilities that may exist between the file I/O facilities provided
by different languages. If such incompatibilities prevent the above simple system being used, we
need to adopt a system that off-loads all file I/O to external code.

What this means in practice is that if the above simple approach cannot be used, you must
instead provide some simple Fortran routines that perform the actual transfer of data to and
from files and similar external data stores. The routines you provide are supplied as the source
and/or sink routine arguments to AST_CHANNEL when you create a Channel (§15.2). An
example is the best way to illustrate this.

Consider the following simple subroutine called SOURCE. It reads a single line of text from a
Fortran I/O unit and then calls AST_PUTLINE to pass it to the AST library, together with its
length. It sets this length to be negative if there is no more input:

SUBROUTINE SOURCE(STATUS)
INTEGER STATUS
CHARACTER * (200) BUFFER

READ(1, °(A)’, END = 99) BUFFER
CALL AST_PUTLINE(BUFFER, LEN(BUFFER), STATUS)
RETURN

99 CALL AST_PUTLINE(BUFFER, -1, STATUS)
END

Our main program might then look something like this (omitting error checking for brevity):

EXTERNAL SOURCE

15.14 Writing Objects to Files 137

* (Open the input file.
OPEN(UNIT = 1, FILE = ’infile.ast’, STATUS = ’0LD’)

* Create the Channel and read an Object from it.
CHANNEL = AST_CHANNEL(SOURCE, AST_NULL, ’ °’, STATUS)
OBJECT = AST_READ(CHANNEL, STATUS)

* Annul the Channel and close the file when done.
CALL AST_ANNUL(CHANNEL, STATUS)
CLOSE(1)

Here, we first open the required input file. We then pass the name of our SOURCE routine as
the first argument to AST_CHANNEL when creating a new Channel (ensuring that SOURCE
also appears in an EXTERNAL statement). When we read an Object from this Channel using
AST_READ, the SOURCE routine will be called to obtain the textual data from the file, the
end-of-file being detected when it yields a negative line length.

Note, if a value is set for the SourceFile attribute, the AST_READ function will ignore any
source routine specified when the Channel was created.

15.14 Writing Objects to Files

As for reading, writing Objects to files can be done in two different ways. Again, the simple
approach is to use the SinkFile attribute of the Channel. For instance, the following will write
a pair of Objects to a text file called “fred.txt”:

CALL AST_SET(CHANNEL, ’SinkFile=fred.txt’, STATUS)
NOBJ = AST_WRITE(CHANNEL, OBJECT1, STATUS)
NOBJ = AST_WRITE(CHANNEL, OBJECT2, STATUS)
CALL AST_CLEAR(CHANNEL, ’SinkFile’, STATUS)

Note, the act of clearing the attribute tells AST that no more output will be written to the file
and so the file is then closed. If the attribute is not cleared, the file will remain open and further
Objects can be written to it. The file will always be closed when the Channel is deleted.

If the details of the language’s I/O system on the computer you are using means that the above
approach cannot be used, then we can write a SINK routine, that obtains a line of output text
from the AST library by calling AST_GETLINE and then writes it to a file. We can use this in
basically the same way as the SOURCE routine in the previous section (§15.13):

SUBROUTINE SINK(STATUS)
INTEGER L, STATUS
CHARACTER * (200) BUFFER

CALL AST_GETLINE(BUFFER, L, STATUS)
IF (L .GT. 0) WRITE(2, ’(A)’) BUFFER(: L)

END

138 15 SAVING AND RESTORING OBJECTS (CHANNELS)

In this case, our main program would supply the name of this SINK routine as the second
argument to AST_CHANNEL (ensuring that it also appears in an EXTERNAL statement), as
follows:

EXTERNAL SINK

* QOpen the output file.
OPEN(UNIT = 2, FILE = ’outfile.ast’, STATUS = ’NEW’)

* Create a Channel and write an Object to it.
CHANNEL = AST_CHANNEL(SOURCE, SINK, ’ ’, STATUS)
NOBJ = AST_WRITE(CHANNEL, OBJECT, STATUS)

* Annul the Channel and close the file when done.
CALL AST_ANNUL(CHANNEL, STATUS)
CLOSE(2)

Note that we can specify a source and/or a sink routine for the Channel, and that these may
use either the same file, or different files according to whether we are reading or writing. AST
has no knowledge of the underlying file system, nor of file positioning. It just reads and writes
sequentially. If you wish, for example, to reposition a file at the beginning in between reads and
writes, then this can be done directly (and completely independently of AST) using standard
Fortran statements.

If an error occurs in your source or sink routine, you can communicate this to the AST library
by setting the STATUS argument to any error value. This will immediately terminate the read
or write operation.

Note, if a value is set for the SinkFile attribute, the AST_WRITE function will ignore any sink
routine specified when the Channel was created.

15.15 Reading and Writing Objects to other Places

It should be obvious from the above (§15.13 and §15.14) that a Channel’s source and sink
routines provide a flexible means of intercepting textual data that describes AST Objects as it
flows in and out of your program. In fact, you might like to regard a Channel simply as a filter
for converting AST Objects to and from a stream of text which is then handled by your source
and sink routines, where the real 1/O occurs.

This gives you the ability to store AST Objects in virtually any data system, so long as you
can convert a stream of text into something that can be stored (it need no longer be text)
and retrieve it again. There is generally no need to retain comments. Other possibilities, such
as inter-process and network communication, could also be implemented via source and sink
functions in basically the same way.

139

16 Storing AST Objects in FITS Headers (FitsChans)

A FITS header is a sequence of 80-character strings, formatted according to particular rules
defined by the Flexible Image Transport System (FITS). FITS?? is a widely-used standard for
data interchange in astronomy and has also been adopted as a data processing format in some
astronomical data reduction systems. The individual 80-character strings in a FITS header are
usually called cards or header cards (for entirely anachronistic reasons).

A sequence of FITS cards appears as a header at the start of every FITS data file, and sometimes
also at other points within it, and is used to provide ancillary information which qualifies or
describes the main array of data stored in the file. As such, FITS headers are prime territory
for storing information about the coordinate systems associated with data held in FITS files.

In this section, we will examine how to store information in FITS headers directly in the form of
AST Objects—a process which is supported by a specialised class of Channel called a FitsChan.
Our discussion here will turn out to be a transitional step that emphasises the similarities
between a FitsChan and a Channel (§15). At the same time, it will prepare us for the next
section (§17), where we will examine how to use a FitsChan to tackle some of the more difficult
problems that FITS headers can present.

16.1 The Native FITS Encoding

As it turns out, we are not the first to have thought of storing WCS information in FITS
headers. In fact, the original FITS standard (1981 vintage) defined a set of header keywords
for this purpose which have been widely used, although they have proved too limited for many
practical purposes.

At the time of writing, a number of different ways of using FITS headers for storing WCS
information are in use, most (although not all) based on the original standard. We will refer to
these alternative ways of storing the information as FITS encodings but will defer a discussion
of their advantages and limitations until the next section (§17).

Here, we will examine how to store AST Objects directly in FITS headers. In effect, this defines
a new encoding, which we will term the native encoding. This is a special kind of encoding,
because not only does it allow us to associate conventional WCS calibration information with
FITS data, but it also allows any other information that can be expressed in terms of AST
Objects to be stored as well. In fact, the native encoding provides us with facilities roughly
analogous to those of the Channel (§15)—i.e. a lossless way of transferring AST Objects from
program to program—but based on FITS headers instead of free-format text.

16.2 The FitsChan Model

I/O between AST Objects and FITS headers is supported by a specialised form of Channel
called a FitsChan. A FitsChan contains a buffer which may hold any number, including zero, of
FITS header cards. This buffer forms a workspace in which you can assemble FITS cards and
manipulate them before writing them out to a file.

By default, when a FitsChan is first created, it contains no cards and there are five ways of
inserting cards into it:

Zhttp://fits.gsfc.nasa.gov/

140 16 STORING AST OBJECTS IN FITS HEADERS (FITSCHANS)

1. You may add cards yourself, one at a time, using AST_PUTFITS (§16.8).

2. You may add cards yourself, supplying all cards concatenated into a single string, using
AST_PUTCARDS. (§16.9).

3. You may write an AST Object to the FitsChan (using AST_WRITE), which will have the
effect of creating new cards within the FitsChan which describe the Object (§16.5).

4. You may assign a value to the SourceFile attribute of the FitsChan. The value should be
the path to a text file holding a set of FITS header cards, one per line. When the SourceFile
value is set (using AST_SETC or AST_SET). the file is opened and the headers copied
from it into the FitsChan. The file is then imemdiately closed.

5. You may specify a source routine which reads data from some external store of FITS
cards, just like the source associated with a basic Channel (§15.13). If you supply a source
routine, it will be called when the FitsChan is created in order to fill it with an initial set
of cards (§16.14).

There are also four ways of removing cards from a FitsChan:

1. You may delete cards yourself, one at a time, using AST_DELFITS (§16.13).

2. You may read an AST Object from the FitsChan (using AST_READ), which will have
the effect of removing those cards from the FitsChan which describe the Object (§16.10).

3. You may assign a value to the FitsChan’s SinkFile attribute. When the FitsCHan is
deleted, any remaining headers are written out to a text file with path equal to the value
of the SinkFile attribute.

4. Alternatively, You may specify a sink routine which writes data to some external store
of FITS cards, just like the sink associated with a basic Channel (§15.14). If you supply
a sink routine, it will be called when the FitsChan is deleted in order to write out any
FITS cards that remain in it (§16.14). Note, the sink routine is not called if the SinkFile
attribute has been set.

Note, in particular, that reading an AST Object from a FitsChan is destructive. That is, it
deletes the FITS cards that describe the Object. The reason for this is explained in §17.5.

In addition to the above, you may also read individual cards from a FitsChan using the function
AST_FINDFITS (which is not destructive). This is the main means of writing out FITS cards
if you have not supplied a sink routine. AST_FINDFITS also provides a means of searching for
particular FITS cards (by keyword, for example) and there are other facilities for overwriting
cards when required (§16.13).

16.3 Creating a FitsChan

The FitsChan constructor function, AST_FITSCHAN, is straightforward to use:

16.4 Addressing Cards in a FitsChan 141

INCLUDE ’AST_PAR’
INTEGER FITSCHAN, STATUS

STATUS = 0

FITSCHAN = AST_FITSCHAN(AST_NULL, AST_NULL, ’Encoding=NATIVE’, STATUS)

Here, we have omitted any source or sink functions by supplying the AST_NULL routine for the
first two arguments (remember to include the AST_PAR include file which contains the required
EXTERNAL statement for this routine). We have also initialised the FitsChan’s Encoding
attribute to NATIVE. This indicates that we will be using the native encoding (§16.1) to store
and retrieve Objects. If this was left unspecified, the default would depend on the FitsChan’s
contents. An attempt is made to use whatever encoding appears to have been used previously.
For an empty FitsChan, the default is NATIVE, but it does no harm to be sure.

16.4 Addressing Cards in a FitsChan

Because a FitsChan contains an ordered sequence of header cards, a mechanism is needed for
addressing them. This allows you to specify where new cards are to be added, for example, or
which card is to be deleted.

This role is filled by the FitsChan’s integer Card attribute, which gives the index of the current
card in the FitsChan. You can nominate any card you like to be current, simply by setting a
new value for the Card attribute, for example:

INTEGER ICARD

CALL AST_SETI(FITSCHAN, ’Card’, ICARD, STATUS)

where ICARD contains the index of the card on which you wish to operate next. Some functions
will update the Card attribute as a means of advancing through the sequence of cards, when
reading them for example, or to indicate which card matches a search criterion.

The default value for Card is one, which is the index of the first card. This means that you can
“rewind” a FitsChan to access its first card by clearing the Card attribute:

CALL AST_CLEAR(FITSCHAN, ’Card’, STATUS)

The total number of cards in a FitsChan is given by the integer Ncard attribute. This is a
read-only attribute whose value is automatically updated as you add or remove cards. It means
you can address all the cards in sequence using a loop such as the following:

DO 1 ICARD = 1, AST_GETI(FITSCHAN, ’Ncard’, STATUS)
CALL AST_SETI(FITSCHAN, ’Card’, ICARD, STATUS)
<access the current card>

1 CONTINUE

142 16 STORING AST OBJECTS IN FITS HEADERS (FITSCHANS)

However, it is usually possible to write slightly tidier loops based on the AST_FINDFITS func-
tion described later (§16.6 and §16.13).

If you set the Card attribute to a value larger than Ncard, the FitsChan is regarded as being
positioned at its end-of-file. In this case there is no current card and an attempt to obtain a
value for the Card attribute will always return the value Ncard + 1. When a FitsChan is empty,
it is always at the end-of-file.

16.5 Writing Native Objects to a FitsChan

Having created an empty FitsChan (§16.3), you can write any AST Object to it in the native
encoding using the AST_WRITE function. Let us assume we are writing a SkyFrame,?* as

follows:

INTEGER NOBJ, SKYFRAME

NOBJ = AST_WRITE(FITSCHAN, SKYFRAME, STATUS)

Since we have selected the native encoding (§16.1), there are no restrictions on the class of
Object we may write, so AST_WRITE should always return a value of one, unless an error
occurs. Unlike a basic Channel (§15.3), this write operation will not produce any output from
our program. The FITS headers produced are simply stored inside the FitsChan.

After this write operation, the Ncard attribute will be updated to reflect the number of new
cards added to the FitsChan and the Card attribute will point at the card immediately after
the last one written. Since our FitsChan was initially empty, the Card attribute will, in this
example, point at the end-of-file (§16.4).

The FITS standard imposes a limit of 68 characters on the length of strings which may be
stored in a single header card. Sometimes, a description of an AST Object involves the use of
strings which exceed this limit (e.g. a Frame title can be of arbitrary length). If this occurs, the
long string will be split over two or more header cards. Each “continuation” card will have the
keyword CONTINUE in columns 1 to 8, and will contain a space in column 9 (instead of the usual
equals sign). An ampersand (“&”) is appended to the end of each of the strings (except the last
one) to indicate that the string is continued on the next card.

Note, this splitting of long strings over several cards only occurs when writing AST Objects to a
FitsChan using the AST_WRITE routine and the native encoding. If a long string is stored in a
FitsChan using (for instance) the AST_PUTFITS or AST_PUTCARDS routine, it will simply
be truncated.

16.6 Extracting Individual Cards from a FitsChan

To examine the contents of the FitsChan after writing the SkyFrame above (§16.5), we must
write a simple loop to extract each card in turn and print it out. We must also remember to
rewind the FitsChan first, e.g. using AST_CLEAR. The following loop would do:

24More probably, you would want to write a FrameSet, but for purposes of illustration a SkyFrame contains a
more manageable amount of data.

16.7 The Native FitsChan Output Format 143

CHARACTER * (80) CARD

CALL AST_CLEAR(FITSCHAN,

2 CONTINUE

IF (AST_FINDFITS(FITSCHAN,

WRITE (%, ’(A)’) CARD

GO TO 2

END IF

>Card’, STATUS)

»Y£> CARD, .TRUE., STATUS)) THEN

Here, we have used the AST_FINDFITS function to find a FITS card by keyword. It is given
a keyword template of “%f” which matches any FITS keyword, so it always finds the current
card, which it returns. Its fourth argument is set to .TRUE., to indicate that the Card attribute
should be incremented afterwards so that the following card will be found the next time around
the loop. AST_FINDFITS returns .FALSE. when it reaches the end-of-file and this terminates

the loop.

If we were storing the FITS headers in an output FITS file instead of printing them out, we
might use a loop like this but replace the WRITE statement with a call to a suitable data access
routine to store the header card. This would only be necessary if we had not provided a sink
routine for the FitsChan (§16.14).

16.7 The Native FitsChan Output Format

If we print out the FITS header cards describing the SkyFrame we wrote earlier (§16.5), we
should obtain something like the following:

COMMENT AST ++++++++++++++++++t++tt+tttttttttttttt+tt+tt++++++++++++++++++ AST
COMMENT AST

COMMENT AST

BEGAST_A= ’SkyFrame’

NAXES_A =
AX1_A =
BEGAST_B=
ENDAST_A=
AX2_A

BEGAST_C
ENDAST_B=
ISA_A
SYSTEM_A=
EPOCH_A =
ENDAST_C=

COMMENT AST

J
’SkyAxis
’SkyAxis
J
’SkyAxis
’SkyAxis
’Frame

)

)

J

)

)

)

’FK4-NO-E’

’SkyFrame’

COMMENT AST

COMMENT AST

Beginning of AST data for SkyFrame object AST
.. AST

Description of celestial coordinate system
Number of coordinate axes

Axis number 1

Celestial coordinate axis

End of object definition

Axis number 2

Celestial coordinate axis

End of object definition
Coordinate system description
Celestial coordinate system type
Besselian epoch of observation
End of object definition

As you can see, this resembles the information that would be written to a basic Channel to
describe the same SkyFrame (§15.8), except that it has been formatted into 80-character header
cards according to FITS conventions.

There are also a number of other differences worth noting:

144 16 STORING AST OBJECTS IN FITS HEADERS (FITSCHANS)

1. There is no unnecessary information about default values provided for the benefit of the
human reader. This is because the Full attribute for a FitsChan defaults to —1, thus
suppressing this information (c.f. §15.9). You can restore the information if you wish by
setting Full to 0 or 41, in which case additional COMMENT cards will be generated to
hold it.

2. The information is not indented, because FITS does not allow this. However, if you change
the Full attribute to 0 or +1, comments will be included that are intended to help break
up the sequence of headers and highlight its structure. This will probably only be of use
if you are attempting to track down a problem by examining the FITS cards produced in
detail.

3. The FITS keywords which appear to the left of the “=" signs have additional characters
(“_A”, “_B”, etc.) appended to them. This is done in order to make each keyword unique.

This last point is worth further comment and is necessary because the FITS standard only
allows for certain keywords (such as COMMENT and HISTORY) to appear more than once.
AST_WRITE therefore appends an arbitrary sequence of two characters to each new keyword
it generates in order to ensure that it does not duplicate any already present in the FitsChan.

The main risk from not following this convention is that some software might ignore (say) all but
the last occurrence of a keyword before passing the FITS headers on. Such an event is unlikely,
but would obviously destroy the information present, so AST_WRITE enforces the uniqueness
of the keywords it uses. The extra characters added are ignored when the information is read
back.

As with a basic Channel, you can also suppress the comments produced in a FitsChan by
setting the boolean (integer) Comment attribute to zero (§15.10). However, FITS headers are
traditionally generously commented, so this is not recommended.

16.8 Adding Individual Cards to a FitsChan

To insert individual cards into a FitsChan, prior to reading them back as Objects for example,
you should use the AST_PUTFITS routine. You can insert a card in front of the current one
as follows:

CALL AST_PUTFITS(FITSCHAN, CARD, .FALSE., STATUS)

where the third argument of .FALSE. indicates that the current card should not be overwritten.
Note that facilities are not provided by AST for formatting the card contents.

After inserting a card, the FitsChan’s Card attribute points at the original Card, or at the
end-of-file if the FitsChan was originally empty. Entering a sequence of cards is therefore
straightforward. If CARDS is an array of character strings containing FITS header cards and
NCARDS is the number of cards, then a loop such as the following will insert the cards in
sequence into a FitsChan:

INTEGER NCARD
CHARACTER * (80) CARDS(NCARD)

16.9 Adding Concatenated Cards to a FitsChan 145

DO 3 ICARD = 1, NCARD
CALL AST_PUTFITS(FITSCHAN, CARDS(ICARD), .FALSE., STATUS)
3 CONTINUE

Note that AST_PUTFITS enforces the validity of a FitsChan by rejecting any cards which do
not adhere to the FITS standard. If any such cards are detected, an error will result.

16.9 Adding Concatenated Cards to a FitsChan

If you have all your cards concatenated together into a single long string, each occupying
80 characters (with no delimiters), you can insert them into a FitsChan in a single call us-
ing AST_PUTCARDS. This call first empties the supplied FitsChan of any existing cards,
then inserts the new cards, and finally rewinds the FitsChan so that a subsequent call to
AST_READ will start reading from the first supplied card. The AST_PUTCARDS routine
uses AST_PUTFITS internally to interpret and store each individual card, and so the caveats
in §16.8 should be read.

16.10 Reading Native Objects From a FitsChan

Once you have stored a FITS header description of an Object in a FitsChan using the native
encoding (§16.5), you can read it back using AST_READ in much the same way as with a basic
Channel (§15.4). Similar comments about validating the Object you read also apply (§15.6). If
you have just written to the FitsChan, you must remember to rewind it first:

INTEGER OBJECT

CALL AST_CLEAR(FITSCHAN, ’Card’, STATUS)
OBJECT = AST_READ(FITSCHAN, STATUS)

An important feature of a FitsChan is that read operations are destructive. This means that if
an Object description is found, it will be consumed by AST_READ which will remove all the
cards involved, including associated COMMENT cards, from the FitsChan. Thus, if you write
an Object to a FitsChan, rewind, and read the same Object back, you should end up with the
original FitsChan contents. If you need to circumvent this behaviour for any reason, it is a
simple matter to make a copy of a FitsChan using AST_COPY (§4.12). If you then read from
the copy, the original FitsChan will remain untouched.

After a read completes, the FitsChan’s Card attribute identifies the card immediately following
the last card read, or the end-of-file of there are no more cards.

Since the native encoding is being used, any long strings involved in the object description
will have been split into two or more adjacent contuation cards when the Object was stored
in the header using routine AST_WRITE. The AST_READ routine reverses this process by
concatenating any such adjacent continuation cards to re-create the original long string.

146 16 STORING AST OBJECTS IN FITS HEADERS (FITSCHANS)

16.11 Saving and Restoring Multiple Objects in a FitsChan

When using the native FITS encoding, multiple Objects may be stored and all I/O operations
are sequential. This means that you can simply write a sequence of Objects to a FitsChan.
After each write operation, the Card attribute will be updated so that the next write appends
the next Object description to the previous one.

If you then rewind the FitsChan, you can read the Objects back in the original order. Reading
them back will, of course, remove their descriptions from the FitsChan (§16.10) but the behaviour
of the Card attribute is such that successive reads will simply return each Object in sequence.

The only thing that may require care, given that a FitsChan can always be addressed randomly
by setting its Card attribute, is to avoid writing one Object on top of another. For obvious
reasons, the Object descriptions in a FitsChan must remain separate if they are to make sense
when read back.

16.12 Mixing Native Objects with Other FITS Cards

Of course, any real FITS header will contain other information besides AST Objects, if only
the mandatory FITS cards that must accompany all FITS data. When FITS headers are read
in from a real dataset, therefore, any native AST Object descriptions will be inter-mixed with
many other cards.

Because this is the normal state of affairs, the boolean (integer) Skip attribute for a FitsChan
defaults to one. This means that when you read an Object From a FitsChan, any irrelevant
cards will simply be skipped over until the start of the next Object description, if any, is found.
If you start reading part way through an Object description, no error will result. The remainder
of the description will simply be skipped.

Setting Skip to zero will change this behaviour to resemble that of a basic Channel (§15.12),
where extraneous data are not permitted by default, but this will probably rarely be useful.

16.13 Finding and Changing Cards in a FitsChan

You can search for, and retrieve, particular cards in a FitsChan by keyword, using the function
AST_FINDFITS. This performs a search, starting at the current card, until it finds a card whose
keyword matches the template you supply, or the end-of-file is reached.

If a suitable card is found, AST_FINDFITS returns the card’s contents and then sets the
FitsChan’s Card attribute either to identify the card found, or the one following it. The
way you want the Card attribute to be set is indicated by the fourth (logical) argument to
AST_FINDFITS. A value of .TRUE. is returned to indicate success. If a suitable card cannot
be found, AST_FINDFITS returns a value of .FALSE. to indicate failure and sets the FitsChan’s
Card attribute to the end-of-file.

Requesting that the Card attribute be set to indicate the card that AST_FINDFITS finds is
useful if you want to replace that card with a new one, as in this example:

CHARACTER * (80) NEWCARD
LOGICAL JUNK

16.14 Source and Sink Routines for FitsChans 147

JUNK = AST_FINDFITS(FITSCHAN, ’AIRMASS’, CARD, .FALSE., STATUS)
CALL AST_PUTFITS(FITSCHAN, NEWCARD, .TRUE., STATUS)

Here, AST_FINDFITS is used to search for a card with the keyword AIRMASS. If the card is
found, AST_PUTFITS then overwrites it with a new card. Otherwise, the Card attribute ends
up pointing at the end-of-file and the new card is simply appended to the end of the FitsChan.

A similar approach can be used to delete selected cards from a FitsChan using AST_DELFITS,
which deletes the current card:

IF (AST_FINDFITS(FITSCHAN, ’BSCALE’, CARD, .FALSE., STATUS)) THEN
CALL AST_DELFITS(FITSCHAN, STATUS)
END IF

This deletes the first card, if any, with the BSCALE keyword.

Requesting that AST_FINDFITS increments the Card attribute to identify the card following
the one found is more useful when writing loops. For example, the following loop extracts each
card whose keyword matches the template “CD%6d” (that is, “CD” followed by six decimal
digits):

4 CONTINUE
IF (AST_FINDFITS(FITSCHAN, ’CD%6d’, CARD, .TRUE., STATUS)) THEN
<process the card’s contents>
GO TO 4
END IF

For further details of keyword templates, see the description of AST_FINDFITS in Appendix B.

16.14 Source and Sink Routines for FitsChans

The use of source and sink routines with a FitsChan is optional. This is because you can always
arrange to explicitly fill a FitsChan with FITS cards (§16.8 and §16.9) and you can also extract
any cards that remain and write them out yourself (§16.6) before you delete the FitsChan.

If you choose to use these routines, however, they behave in a very similar manner to those used
by a Channel (§15.13 and §15.14). You supply these routines, as arguments to the constructor
function AST_FITSCHAN when you create the FitsChan (§16.3). The source routine is invoked
implicitly at this point to fill the FitsChan with FITS cards and the FitsChan is then rewound,
so that the first card becomes current. The sink routine is automatically invoked later, when
the FitsChan is deleted, in order to write out any cards that remain in it.

The only real difference between the source and sink routines for a FitsChan and a basic Channel
is that FITS cards are limited in length to 80 characters, so the choice of buffer size is simplified.
This affects the way the card contents are passed, so the routines themselves are slightly different.
The following is therefore the FitsChan equivalent of the Channel SOURCE routine given in
§15.13:

148

99

16 STORING AST OBJECTS IN FITS HEADERS (FITSCHANS)

INTEGER FUNCTION FITSSOURCE(CARD, STATUS)
CHARACTER * (80) CARD
INTEGER STATUS

READ(1, °(A)’, END = 99) CARD
FITSSOURCE = 1
RETURN

FITSSOURCE = 0
END

Here, the FITS card contents are returned via the CARD argument (the AST_PUTLINE routine
should not be used) and the function returns 1 to indicate that a card has been read. A value
of zero is returned if there are no more cards to read.

The sink routine for a FitsChan is also a little different (c.f. the SINK routine in §15.14), as
follows:

SUBROUTINE FITSSINK(CARD, STATUS)
CHARACTER * (80) CARD

INTEGER STATUS

WRITEC 2, ’(A)’) CARD

END

The contents of the FITS card being written are passed via the CARD argument (the AST_GETLINE
routine should not be used).

Of course, both of these examples assume that you are accessing text files. If this is not the
case, then appropriate changes to the I/O statements would be needed. The details obviously
depend on the format of the file you are handling, which need not necessarily be a true FITS

file.

149

17 Using Foreign FITS Encodings

We saw in the previous section (§16) how to store and retrieve any kind of AST Object in a
FITS header by using a FitsChan. To achieve this, we set the FitsChan’s Encoding attribute to
NATIVE. However, the Objects we wrote could then only be read back by other programs that
use AST.

In practice, we will also encounter FITS headers containing WCS information written by other
software systems. We will probably also need to write FITS headers in a format that can be
understood by these systems. Indeed, this interchange of data is one of the main reasons for the
existence of FITS, so in this section we will examine how to accommodate these requirements.

17.1 The Foreign FITS Encodings

As mentioned previously (§16.1), there are a number of conventions currently in use for storing
WCS information in FITS headers, which we call encodings. Here, we are concerned with those
encodings defined by software systems other than AST, which we term foreign encodings.

Currently, AST supports six foreign encodings, which may be selected by setting the Encoding
attribute of a FitsChan to one of the following (character string) values:

DSS
This encoding stores WCS information using the convention developed at the
Space Telescope Science Institute for the Digitised Sky Survey (DSS) astro-
metric plate calibrations. DSS images which use this convention are widely
available and it is understood by a number of important and well-established
astronomy applications.

However, the calibration model used (based on a polynomial fit) is not eas-
ily applicable to other types of data and creating the polynomial coefficients
needed to calibrate your own images can prove difficult. For this reason, the
DSS encoding is probably best viewed as a “read-only” format. It is possible,
however, to read in WCS information using this encoding and then to write it
back out again, so long as only minor changes have been made.

FITS-WCS
This encoding is very important because it is based on a new FITS standard
which should, for the first time, address the problem of celestial coordinate sys-
tems in a proper manner, by considerably extending the original FITS standard.

The conventions used are described in a series of papers by E.W. Greisen,
M. Calabretta, et. al., often referred to as the “FITS-WCS papers”. They
are described at http://fits.gsfc.nasa.gov /fits_wcs.html. Now that the first two
papers in this series have been agreed, this encoding should be understood by
any FITS-WCS compliant software and it is likely to be adopted widely for
FITS data in future. For details of the coverage of these conventions provided
by the FitsChan class, see Appendix F.

FITS-IRAF
This encoding is based on the conventions described in the document “World
Coordinate Systems Representations Within the FITS Format” by R.J. Hanisch

150 17 USING FOREIGN FITS ENCODINGS

and D.G. Wells, 1988.2° It is employed by the IRAF data analysis facility, so its
use will facilitate data exchange with IRAF. This encoding is in effect a sub-set
of the current FITS-WCS encoding.

FITS-PC
This encoding is based on a previous version of the proposed new FITS WCS
and scaling. Versions of AST prior to V1.5 used this scheme for the FITS-WCS
encoding. As of V1.5, FITS-WCS uses CDi_j keywords instead.?¢ The FITS-
PC encoding is included in AST V1.5 only to allow FITS-WCS data created
with previous versions to be read. It should not, in general, be used to create
new data sets.

FITS-AIPS
This encoding is based on the conventions described in the document “Non-
linear Coordinate Systems in AIPS” by Eric W. Greisen (revised 9th September,
1994).27 It is currently employed by the AIPS data analysis facility, so its use
will facilitate data exchange with AIPS. This encoding uses CROTAi and CDELTi
keywords to describe axis rotation and scaling.

FITS-AIPS++
Encodes coordinate system information in FITS header cards using the conven-
tions used by the AIPS++ project. This is an extension of FITS-AIPS which
includes some of the features of FITS-PC and FITS-IRAF.

For more detail about the above encodings, see the description of the Encoding attribute in
Appendix C.

17.2 Limitations of Foreign Encodings

The foreign encodings available for storing WCS information in FITS headers have a number of
limitations when compared with the native encoding of AST Objects (§16). The main ones are:

1. Only one class of AST Object, the FrameSet, may be represented using a foreign FITS
encoding. This should not come as a surprise, because the purpose of storing WCS infor-
mation in FITS headers is to attach coordinate systems to an associated array of data.
Since the FrameSet is the AST Object designed for the same purpose (§13.4), there is a
natural correspondence.

The way in which a FrameSet is translated to and from the foreign encoding also follows
from this correspondence. The FrameSet’s base Frame identifies the data grid coordinates
of the associated FITS data. These are the same as FITS pixel coordinates, in which
the first pixel (in 2 dimensions) has coordinates (1,1) at its centre. Similarly, the current
Frame of the FrameSet identifies the FITS world coordinate system associated with the
data.

25 Available by ftp from fits.cv.nrao.edu /fits/documents/wcs/wcs88.ps.Z

26There are many other differences between the previous and the current FITS-WCS encodings. The keywords
to describe axis rotation and scaling is used purely as a label to identify the scheme.

27 Available by ftp from fits.cv.nrao.edu /fits/documents/wcs/aips27.ps.Z

17.3 Identifying Foreign Encodings on Input 151

2. You may store a representation of only a single FrameSet in any individual set of FITS
header cards (i.e. in a single FitsChan) at one time. If you attempt to store more than
one, you may over-write the previous one or generate an invalid representation of your
WCS information.

This is mainly a consequence of the use of fixed FITS keywords by foreign encodings and
the fact that you cannot, in general, have multiple FITS cards with the same keyword.

3. In general, it will not be possible to store every possible FrameSet that you might con-
struct. Depending on the encoding, only certain FrameSets that conform to particular
restrictions can be represented and, even then, some of their information may be lost.
See the description of the Encoding attribute in Appendix C for more details of these
limitations.

It should be understood that using foreign encodings to read and write information held in AST
Objects is essentially a process of converting the data format. As such, it potentially suffers from
the same problems faced by all such processes, i.e. differences between the AST data model and
that of the foreign encoding may cause some information to be lost. Because the AST model is
extremely flexible, however, any data loss can largely be eliminated when reading. Instead, this
effect manifests itself in the form of the above encoding-dependent restrictions on the kind of
AST Objects which may be written.

One of the aims of the AST library, of course, is to insulate you from the details of these foreign
encodings and the restrictions they impose. We will see shortly, therefore, how AST provides
a mechanism for determining whether your WCS information satisfies the necessary conditions
and allows you to make an automatic choice of which encoding to use.

17.3 Identifying Foreign Encodings on Input

Let us now examine the practicalities of extracting WCS information from a set of FITS header
cards which have been written by some other software system. We will pretend that our program
does not know which encoding has been used for the WCS information and must discover this
for itself. In order to have a concrete example, however, we will use the following set of cards.
These use the FITS-AIPS encoding and contain a typical mix of other FITS cards which are
irrelevant to the WCS information in which we are interested:

SIMPLE = T / Written by IDL: 30-Jul-1997 05:35:42.00
BITPIX = -32 / Bits per pixel.

NAXIS = 2 / Number of dimensions
NAXIS1 = 300 / Length of x axis.
NAXIS2 = 300 / Length of y axis.
CTYPE1 = ’GLON-ZEA’ / X-axis type

CTYPE2 = ’GLAT-ZEA’ / Y-axis type

CRVAL1 = -149.56866 / Reference pixel value
CRVAL2 = -19.758201 / Reference pixel value
CRPIX1 = 150.500 / Reference pixel
CRPIX2 = 150.500 / Reference pixel
CDELT1 = -1.20000 / Degrees/pixel

CDELT2 = 1.20000 / Degrees/pixel

CROTA1 = 0.00000 / Rotation in degrees.

152 17 USING FOREIGN FITS ENCODINGS

SURVEY = ’COBE DIRBE’

BUNITS = ’MJy/sr °’ /

ORIGIN = ’CDAC ’ / Cosmology Data Analysis Center

TELESCOP= ’COBE ’ / COsmic Background Explorer satellite
INSTRUME= °DIRBE ? / COBE instrument [DIRBE, DMR, FIRAS]
PIXRESOL= 9 / Quad tree pixel resolution [6, 9]

DATE = ’27/09/94° / FITS file creation date (dd/mm/yy)
DATE-MAP= ’16/09/94° / Date of original file creation (dd/mm/yy)
COMMENT COBE specific keywords

DATE-BEG= ’08/12/89° / date of initial data represented (dd/mm/yy)
DATE-END= ’25/09/90° / date of final data represented (dd/mm/yy)

The first step is to create a FitsChan and insert these cards into it. If CARDS is an array of
character strings holding the header cards and NCARDS is the number of cards, this could be
done as follows:

INCLUDE ’AST_PAR’
INTEGER FITSCHAN, ICARD, NCARD, STATUS
CHARACTER * (80) CARDS(NCARD)

STATUS = 0

FITSCHAN = AST_FITSCHAN(AST_NULL, AST_NULL, ’> ’, STATUS)
DO 1 ICARD = 1, NCARD
CALL AST_PUTFITS(FITSCHAN, CARDS(ICARD), .FALSE., STATUS)
1 CONTINUE

Note that we have not initialised the Encoding attribute of the FitsChan as we did in §16.3 when
we wanted to use the native encoding. This is because we are pretending not to know which
encoding to use and want AST to determine this for us. By leaving the Encoding attribute un-
set, its default value will adjust to whichever encoding AST considers to be most appropriate,
according to the FITS header cards present. For details of how this choice is made, see the
description of the Encoding attribute in Appendix C.

This approach has the obvious advantages of making our program simpler and more flexible
and of freeing us from having to know about the different encodings available. As a bonus, it
also means that the program will be able to read any new encodings that AST may support in
future, without needing to be changed.

At this point, we could enquire the default value of the Encoding attribute, which indicates
which encoding AST intends to use, as follows:

CHARACTER * (20) ENCODE

ENCODE = AST_GETC(FITSCHAN, ’Encoding’, STATUS)

The result of this enquiry would be the string “FITS-AIPS”. Note that we could also have set
the FitsChan’s Encoding attribute explicitly, such as when creating it:

17.4 Reading Foreign WCS Information from a FITS Header 153

FITSCHAN = AST_FITSCHAN(AST_NULL, AST_NULL, ’Encoding=FITS-AIPS’, STATUS)

If we tried to read information using this encoding (§17.4), but failed, we could then change
the encoding and try again. This would allow our program to take control of how the optimum
choice of encoding is arrived at. However, it would also involve using explicit knowledge of the
encodings available and this is best avoided if possible.

17.4 Reading Foreign WCS Information from a FITS Header

Having stored a set of FITS header cards in a FitsChan and determined how the WCS infor-
mation is encoded (§17.3), the next step is to read an AST Object from the FitsChan using
AST_READ. We must also remember to rewind the FitsChan first, if necessary, such as by
clearing its Card attribute, which defaults to 1:

INTEGER WCSINFO

CALL AST_CLEAR(FITSCHAN, ’Card’, STATUS)
WCSINFO = AST_READ(FITSCHAN, STATUS)

If the pointer returned by AST_READ is not equal to AST__NULL, then an Object has been
read successfully. Otherwise, there was either no information to read or the choice of FITS
encoding (§17.3) was inappropriate.

At this point you might like to indulge in a little data validation along the lines described in
§15.6, for example:

IF (AST_GETC(WCSINFO, ’Class’, STATUS) .EQ. ’FrameSet’) THEN
<the Object is a FrameSet, so use it>

ELSE
<something unexpected was read>

END IF

If a foreign encoding has definitely been used, then the Object will automatically be a FrameSet
(§17.2), so this stage can be omitted. However, if the native encoding (§16.1) might have been
employed, which is a possibility if you accept the FitsChan’s default Encoding value, then any
class of Object might have been read and a quick check would be worthwhile.

If you used AST_SHOW (§4.4) to examine the FrameSet which results from reading our example
FITS header (§17.3), you would find that its base Frame describes the image’s pixel coordinate
system and that its current Frame is a SkyFrame representing galactic coordinates. These two
Frames are inter-related by a Mapping (actually a CmpMap) which incorporates the effects of
various rotations, scalings and a “zenithal equal area” sky projection, so that each pixel of the
FITS image is mapped on to a corresponding sky position in galactic coordinates.

Because this FrameSet may be used both as a Mapping (§13.6) and as a Frame (§13.8), it may
be employed directly to perform many useful operations without any need to decompose it into
its component parts. These include:

154

17 USING FOREIGN FITS ENCODINGS

Transforming data grid (FITS pixel) coordinates into galactic coordinates and vice versa
(§13.6).

Formatting coordinate values (either pixel or galactic coordinates) ready for display to a
user (§7.6 and §7.7).

Enquiring about axis labels (or other axis information—§7.5) which might be used, for
example, to label columns of coordinates in a table (§7.4).

Aligning the image with another image from which a similar FrameSet has been obtained
(§14.3).

Creating a Plot (§21), which can be used to overlay a variety of graphical information
(including a coordinate grid—Figure 8) on the displayed image.

Generating a new FrameSet which reflects any geometrical processing you perform on the
associated image data (§14.5). This new FrameSet could then be written out as FITS
headers to describe the modified image (§17.7).

If the FrameSet contains other Frames (apart from the base and current Frames), then you would
also have access to information about other coordinate systems associated with the image.

17.5 Removing WCS Information from FITS Headers—the Destructive Read

It is instructive at this point to examine the contents of a FitsChan after we have read a FrameSet
from it (§17.4). The following would rewind our FitsChan and display its contents:

CHARACTER CARD * (80)

CALL AST_CLEAR(FITSCHAN, ’Card’, STATUS)

CONTINUE

IF (AST_FINDFITS(FITSCHAN, ’%f’, CARD, .TRUE., STATUS)) THEN
WRITE (*, ’(A)’) CARD
GO TO 2

END IF

The output, if we started with the example FITS header in §17.3, might look like this:

SIMPLE = T / Written by IDL: 30-Jul-1997 05:35:42.00
BITPIX = -32 / Bits per pixel.

NAXIS = 2 / Number of dimensions

NAXIS1 = 300 / Length of x axis.

NAXIS2 = 300 / Length of y axis.

SURVEY = ’COBE DIRBE’

BUNITS = ’MJy/sr °’

ORIGIN = ’CDAC ? / Cosmology Data Analysis Center
TELESCOP= ’COBE ’ / COsmic Background Explorer satellite
INSTRUME= ’DIRBE °’ / COBE instrument [DIRBE, DMR, FIRAS]
PIXRESOL= 9 / Quad tree pixel resolution [6, 9]

17.6 Propagating WCS Information through Data Processing Steps 155

DATE = ’27/09/94° / FITS file creation date (dd/mm/yy)
DATE-MAP= ’16/09/94° / Date of original file creation (dd/mm/yy)
COMMENT COBE specific keywords

DATE-BEG= ’08/12/89’ / date of initial data represented (dd/mm/yy)
DATE-END= ’25/09/90° / date of final data represented (dd/mm/yy)

Comparing this with the original, you can see that all the FITS cards that represent WCS
information have been removed. They have effectively been “sucked out” of the FitsChan by
the destructive read that AST_READ performs and converted into an equivalent FrameSet.
AST remembers where they were stored, however, so that if we later write WCS information
back into the FitsChan (§17.7) they will, as far as possible, go back into their original locations.
This helps to preserve the overall layout of the FITS header.

You can now see why AST_READ performs destructive reads. It is a mechanism for removing
WCS information from a FITS header while insulating you, as a programmer, from the details
of the encoding being used. It means you can ensure that all relevant header cards have been
removed, giving you a clean slate, without having to know which FITS keywords any particular
encoding uses.

Clearing this WCS information out of a FITS header is particularly important when considering
how to write new WCS information back after processing (§17.7). If any relevant FITS cards
are left over from the input dataset and find their way into the new processed header, they could
interfere with the new information being written.?® The destructive read mechanism ensures
that this doesn’t happen.

17.6 Propagating WCS Information through Data Processing Steps

One of the purposes of AST is to make it feasible to propagate WCS information through
successive stages of data processing, so that it remains consistent with the associated image
data. As far as possible, this should happen regardless of the FITS encoding used to store the
original WCS information.

If the data processing being performed does not change the relationship between image pixel
and world coordinates (whatever these may be), then propagation of the WCS information is
straightforward. You can simply copy the FITS header from input to output.

If this relationship changes, however, then the WCS information must be processed alongside
the image data and a new FITS header generated to represent it. In this case, the sequence of
operations within your program would probably be as follows:

1. Read the image data and associated FITS header from the input dataset, putting the
header cards into a FitsChan (§17.3).

2. Read an AST Object, a FrameSet, from the FitsChan (typically using a foreign FITS
encoding—E§17.4).

3. Process the image data and modify the FrameSet accordingly (e.g. §14.5).

28This can happen if a particular keyword is present in the input header but is not used in the output header
(whether particular keywords are used can depend on the WCS information being stored). In such a case, the
original value would not be over-written by a new output value, so would remain erroneously present.

156 17 USING FOREIGN FITS ENCODINGS

4. Write the FrameSet back into the FitsChan (§17.7).
5. Perform any other modification of FITS header cards your program may require.

6. Write the FitsChan contents (i.e. processed header cards) and image data to the output
dataset.

In stage (2), the original WCS information will be removed from the FitsChan by a destructive
read. Later, in stage (4), new WCS information is written to replace it. This is the process
which we consider next (§17.7).

17.7 Writing Foreign WCS Information to a FITS Header

Before we can write processed WCS information held in a FrameSet back into a FitsChan in
preparation for output, we must select the FITS encoding to use. Unfortunately, we cannot
simply depend on the default value of the Encoding attribute, as we did when reading the input
information (§17.3), because the destructive action of reading the WCS data (§17.5) will have
altered the FitsChan’s contents. This, in turn, will have changed the choice of default encoding,
probably causing it to revert to NATIVE.

We will return to the question of the optimum choice of encoding below. For now, let’s assume
we want to use the same encoding for output as we used for input. Since we enquired what that
was before we read the input WCS data from the FitsChan (§17.3), we can now set that value
explicitly. We can also set the FitsChan’s Card attribute back to 1 at the same time (because
the write will fail if the FitsChan is not rewound). AST_WRITE can then be used to write the
output WCS information into the FitsChan:

INTEGER NOBJ

CALL AST_SET(FITSCHAN, ’Card=1, Encoding=’ // ENCODE, STATUS)
NOBJ = AST_WRITE(FITSCHAN, WCSINFO, STATUS)

The value returned by AST_WRITE (assigned to NOBJ) indicates how many Objects were
written. This will either be 1 or zero. A value of zero is used to indicate that the information
could not be encoded in the form you requested. If this happens, nothing will have been written.

If your choice of encoding proves inadequate, the probable reason is that the changes you have
made to the FrameSet have caused it to depart from the data model which the encoding assumes.
AST knows about the data model used by each encoding and will attempt to simplify the
FrameSet you provide so as to fit into that model, thus relieving you of the need to understand
the details and limitations of each encoding yourself.?? When this attempt fails, however, you
must consider what alternative encoding to use.

Ideally, you would probably want to try a sequence of alternative encodings, using an approach
such as the following:

298toring values in the FitsChan for FITS headers NAXIS1, NAXIS2, etc. (the grid dimensions in pixels),
before invoking AST_WRITE can sometimes help to produce a successful write.

17.7 Writing Foreign WCS Information to a FITS Header

* 1.
CALL AST_SET(FITSCHAN, ’Card=1, Encoding=FITS-WCS’, STATUS)
IF (AST_WRITE(FITSCHAN, WCSINFO, STATUS) .EQ. O) THEN
* 2,
CALL AST_SETC(FITSCHAN, ’Encoding’, ENCODE, STATUS)
IF (AST_WRITE(FITSCHAN, WCSINFO, STATUS) .EQ. O) THEN
* 3.
CALL AST_SET(FITSCHAN, ’Encoding=NATIVE’, STATUS)
NOBJ = AST_WRITE(FITSCHAN, WCSINFO, STATUS)
END IF
END IF
That is:

157

1. Start by trying the FITS-WCS encoding, on the grounds that FITS should provide a uni-
versal interchange standard in which all WCS information should be expressed if possible.

2. If that fails, then try the original encoding used for the input WCS information, on the
grounds that you are at least not making the information any harder for others to read

than it originally was.

3. If that also fails, then you are probably trying to store fairly complex information for which
you need the native encoding. Only other AST programs will then be able to read this
information, but these are probably the only programs that will be able to do anything

sensible with it anyway.

An alternative approach might be to encode the WCS information in several ways, since this gives
the maximum chance that other software will be able to read it. This approach is only possible
if there is no significant conflict between the FITS keywords used by the different encodings?".
Adopting this approach would simply require multiple calls to AST_WRITE, rewinding the

FitsChan and changing its Encoding value before each one.

Unfortunately, however, there is a drawback to duplicating WCS information in the FITS header
in this way, because any program which modifies one version of this information and simply
copies the remainder of the header will risk producing two inconsistent sets of information. This
could obviously be confusing to subsequent software. Whether you consider this a worthwhile

risk probably depends on the use to which you expect your data to be put.

30In practice, this means you should avoid mixing FITS-IRAF, FITS-WCS, FITS-AIPS, FITS-AIPS++ and

FITS-PC encodings since they share many keywords.

158 17 USING FOREIGN FITS ENCODINGS

159

18 Storing AST Objects as XML (XmlChan)

XML3! is fast becoming the standard format for passing structured data around the internet,
and much general purpose software has been written for tasks such as the parsing, editing, display
and transformation of XML data. The XmlChan class (a specialised form of Channel) provides
facilities for storing AST objects externally in the form of XML documents, thus allowing such
software to be used.

The primary XML format used by the XmlChan class is a fairly close transliteration of the
AST native format produced by the basic Channel class. Currently, there is no DTD or schema
defining the structure of data produced in this format by an XmlChan. The following is a native
AST representation of a simple 1-D Frame (including comments and with the Full attribute set
to zero so that some default attribute values are included as extra comments):

Begin Frame # Coordinate system description
Title = "1-d coordinate system" # Title of coordinate system
Naxes = 1 # Number of coordinate axes
Domain = "SCREEN" # Coordinate system domain
Lbll = "Axis 1" # Label for axis 1
Unil = "cm" # Units for axis 1
Ax1 = # Axis number 1
Begin Axis # Coordinate axis
Unit = "cm" # Axis units
End Axis
End Frame

The corresponding XmlChan output would look like:

<Frame xmlns="http://www.starlink.ac.uk/ast/xml/"
desc="Coordinate system description">
<_attribute name="Title" quoted="true" value="1-d coordinate system"
desc="Title of coordinate system" default="true"/>
<_attribute name="Naxes" value="1" desc="Number of coordinate axes"/>
<_attribute name="Domain" quoted="true" value="SCREEN"
desc="Coordinate system domain"/>
<_attribute name="Lbll" quoted="true" value="Axis 1"
desc="Label for axis 1" default="true"/>
<_attribute name="Unil" quoted="true" value="cm"
desc="Units for axis 1" default="true"/>
<Axis label="Ax1" desc="Coordinate axis">
<!--Axis number 1-->
<_attribute name="Unit" quoted="true" value="cm" desc="Axis units"/>
</Axis>
</Frame>

Notes:

1. The AST class name is used as the name for an XML element which contain a description
of an AST object.

3http:/ /www.w3.org/XML/

160 18 STORING AST OBJECTS AS XML (XMLCHAN)

2. AST attributes are described by XML elements with the name “_attribute”. Unfortu-
nately, the word “attribute” is also used by XML to refer to a “name=value” pair within
an element start tag. So for instance, the “Title” attribute of the AST Frame object is
described within an XML element with name “_attribute” in which the XML attribute
“name” has the value “Title”, and the XML attribute “value” has the value “1-d coordi-
nate system”. The moral is always to be clear clear about the context (AST or XML) in
which the word attribute is being used!

3. The XML includes comments both as XML attributes with the name “desc”, and as
separate comment tags.

4. Elements which describe default values are identified by the fact that they have an XML
attribute called “default” set to the value “true”. These elements are ignored when being
read back into an XmlChan.

5. The outer-most XML element of an AST object will set the default namespace to http://wuw.starlink.ac.t
which will be inherited by all nested elements.

The XmlChan class changes the default value for the Comment and Full attributes (inherited
from the base Channel class) to zero and -1, resulting in terse output by default. With the
default values for these attributes, the above XML is reduced to the following:

<Frame xmlns="http://www.starlink.ac.uk/ast/xml/">
<_attribute name="Naxes" value="1"/>
<_attribute name="Domain" quoted="true" value="SCREEN"/>
<Axis label="Ax1">
<_attribute name="Unit" quoted="true" value="cm"/>
</Axis>
</Frame>

The XmlChan class uses the Skip attributes very similarly to the Channel class. If Skip is zero
(the default) then an error will be reported if the text supplied by the source function does not
begin with an AST Object. If Skip is non-zero, then initial text is skipped over without error
until the start of an AST object is found. this allows an AST object to be located within a
larger XML document.

18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions

The XmlChan class also provides support for reading (but not writing) XML documents which
use a restricted subset of an early draft (V1.20) of the IVOA Space-Time-Coordinates XML
(STC-X) system. The version of STC-X finally adopted by the IVOA differs in several significant
respects from V1.20, and so the STC-X support currently provided by AST is mainly of historical
interest. Note, AST also supports the alternative “STC-S” linear string description of the STC
model (see §19).

STC-X V1.20 is documented at http://www.ivoa.net/Documents/WD/STC/STC-20050225.html,
and the current version is documented at http://www.ivoa.net/Documents/latest/STC-X.html.

When an STC-X document is read using an XmlChan, the read operation produces an AST
Object of the Stc class, which is itself a subclass of Region. Specifically, each such Object will be

18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions 161

an instance of StcSearchLocation, StcResourceProfile, StcCatalogEntryLocation or StcObsDat-
aLocation. See the description of the XmlChan class and the XmlFormat attribute for further
details.

162 18 STORING AST OBJECTS AS XML (XMLCHAN)

163

19 Reading and writing STC-S descriptions (StcsChans)

The StcsChan class provides facilities for reading and writing IVOA “STC-S” descriptions. STC-
S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string syntax that allows
simple specification of the STC metadata describing a region in an astronomical coordinate
system. AST supports a subset of the STC-S specification, allowing an STC-S description
of a region within an AST-supported astronomical coordinate system to be converted into an
equivalent AST Region object, and vice-versa. For further details, see the full description of the
StesChan class in Appendix D.

164 19 READING AND WRITING STC-S DESCRIPTIONS (STCSCHANS)

165

20 Creating Your Own Private Mappings (IntraMaps)

20.1 The Need for Extensibility

However many Mapping classes are provided by AST, sooner or later you will want to transform
coordinates in some way that has not been foreseen. You might want to plot a graph in some
novel curvilinear coordinate system (perhaps you already have a WCS system in your software
and just want to use AST for its graphical capabilities). Alternatively, you might need to cali-
brate a complex dataset (like an objective prism plate) where each position must be converted to
world coordinates with reference to calibration data under the control of an elaborate algorithm.

In such cases, it is clear that the basic pre-formed components provided by AST for building
Mappings are just not enough. What you need is access to a programming language. However,
if you write your own software to transform coordinate values, then it must be made available
in the form of an AST class (from which you can create Objects) before it can be used in
conjunction with other AST facilities.

At this point you might consider writing your own AST class, but this is not recommended.
Not only would the internal conventions used by AST take some time to master, but you might
also find yourself having to change your software whenever a new version of AST was released.
Fortunately, there is a much easier route provided by the IntraMap class.

20.2 The IntraMap Model

To allow you to write your own Mappings, AST provides a special kind of Mapping called an
IntraMap. An IntraMap is a sort of “wrapper” for a coordinate transformation routine written in
Fortran. You write this routine yourself and then register it with AST. This, in effect, creates a
new class from which you can create Mappings (i.e. IntraMaps) which will transform coordinates
in whatever way your transformation routine specifies.

Because IntraMaps are Mappings, they may be used in the same way as any other Mapping.
For instance, they may be combined in series or parallel with other Mappings using a CmpMap
(§6), they may be inverted (§5.5), you may enquire about their attributes (§4.5), they may be
inserted into FrameSets (§13), etc. They do, however, have some important limitations of which
you should be aware before we go on to consider how to create them.

20.3 Limitations of IntraMaps

By now, you might be wondering why any other kind of Mapping is required at all. After all,
why not simply write your own coordinate transformation routines in Fortran, wrap them up in
IntraMaps and do away with all the other Mapping classes in AST?

The reason is not too hard to find. Any transformation routine you write is created solely by
you, so it is a private extension which does not form a permanent part of AST. If you use it to
calibrate some data and then pass that data to someone else, who has only the standard version
of AST, then they will not be able to interpret it.

Thus, while an IntraMap is fine for use by you and your collaborators (who we assume have
access to the same transformation routines), it does not address the need for universal data

166 20 CREATING YOUR OWN PRIVATE MAPPINGS (INTRAMAPS)

exchange like other AST Mappings do. This is where the “Intra” in the class name “IntraMap”
comes from, implying private or internal usage.

For this reason, it is unwise to store IntraMaps in datasets, unless they will be used solely for
communication between collaborating items of software which share conventions about their use.
A private database describing coordinate systems on a graphics device might be an example
where IntraMaps would be suitable, because the data would probably never be accessed by
anyone else’s software. Restricting IntraMap usage to within a single program (i.e. never
writing it out) is, of course, completely safe.

If, by accident, an IntraMap should happen to escape as part of a dataset, then the unsuspecting
recipient is likely to receive an error message when they attempt to read the data. However,
AST will associate details of the IntraMap’s transformation routine and its author (if provided)
with the data, so that the recipient can make an intelligent enquiry to obtain the necessary
software if this proves essential.

20.4 Writing a Transformation Routine

The first stage in creating an IntraMap is to write the coordinate transformation routine. This
should have a calling interface like the AST_TRANN function provided by AST (